
RADAR: Adaptive Rate Allocation in Distributed Stream Processing Systems
under Bursty Workloads

Ioannis Boutsis, Vana Kalogeraki
Department of Informatics

Athens University of Economics and Business, Athens, Greece
{mpoutsis, vana}@aueb.gr

Abstract—In the recent years we have witnessed a prolif-
eration of distributed stream processing systems that need
to operate under bursty workloads. Examples include road
traffic control, processing of financial feeds, network mon-
itoring and real-time sensor data analysis systems. Meeting
the QoS requirements of the stream processing systems under
burstiness is a challenging process. In this paper we present
our approach for adaptive rate allocation within the distributed
stream processing system to meet the end-to-end execution
time and rate demands of the applications. Our algorithm
determines the rates of the application components at runtime,
with respect to the QoS constraints, to compensate for delays
experienced by the components or to react to sudden bursts of
load. Our technique is distributed and low-cost. Our detailed
experimental results over our Synergy middleware illustrate
that our approach is practical, depicts good performance and
has low resource overhead.

I. INTRODUCTION

Over the recent years a number of applications that gener-
ate real-time data streams have emerged. Examples include
environmental monitoring applications, medical alerting, in-
dustrial process control, network traffic monitoring, multi-
media delivery, online processing of financial feeds, real-
time sensor data analysis systems and location based sys-
tems for road traffic control. Distributed stream processing
systems (DSPS) are commonly used platforms, comprising
collections of physically distributed nodes that are connected
together to offer scalable data transmission and processing
functionality. In distributed stream processing systems, data
produced by heterogeneous, autonomous and large numbers
of globally-distributed data sources is composed dynami-
cally and processed to generate results of interest.

Today’s distributed stream processing systems are vulner-
able to great variations in processing and communication
delays. This is attributed to several factors: First, distributed
stream processing applications need to cope with time-
varying load spikes and changing demand. These are typi-
cally long running processes where the characteristics of the
data may change over time and data may suddenly appear
in bursts. These systems depict highly uncertain workloads
which makes it difficult to predict the occurrence of a burst
in advance. Worst case allocations are usually not preferred
as they result in under-utilization of system resources in

cases that the burst does not occur. Second, distributed
stream processing systems are deployed over shared infras-
tructures and the resources are used concurrently by multiple
executing applications. Thus, the occurrence of a burst at
one application can severely delay processing and affect the
performance of multiple applications in the system. The third
challenge comes from the fact that in a distributed stream
processing system centralized approaches are not efficient
as it is difficult to maintain an accurate view of the system
at all times, since the time to communicate the state of the
system to a centralized manager is large and as a result they
cannot accurately capture the changes in the availability of
the system resources. Thus, a fundamental challenge to the
effective operation of these systems is their ability to identify
events of interest in real-time, even in the face of highly
bursty loads.

While burst management has recently identified as being
critical, previous techniques are not sufficient as they either
result in underutilization of system resources or may require
a substantial amount of packet drops upon the onset of a
burst. One common approach to deal with the problem of
overload is to apply admission control or static reservation
techniques [1]. However, such over-provisioning is of limited
use as it can have significant cost in terms of underutilized
nodes. Furthermore, data bursts can happen and must be
dealt with at runtime. Feedback control approaches have
also been proposed. However, feedback control approaches
use coarse-grained models where they adjust the overall
CPU utilization on the processors in order to meet the
application timeliness requirements. These are best used to
control the aggregate performance of a distributed system,
rather than building flexibility in the system parameters
in terms of the application parameters. A more subtle
approach is to determine a set of feasible solutions during
an offline phase, using approaches such as MultiParametric
Rate Adaptation [2] or using Pareto points[3], so that the
system can select and trigger one of these solutions during
the online phase based on application demands and resource
availability. These approaches [2] [4], including work from
our own group [3], have shown that there is a benefit in
solving the problem online, taking into account estimates
of application latencies and slack times, along with current

resource utilization measurements, to schedule the execution
of the different applications, and adjust the estimates based
on bursty load and resource availability. Online techniques
have significant advantage over offline approaches, that, al-
though produce optimal solutions, they are computationally
expensive and need to know in advance complete system
information, which is often not possible in Internet-scale
systems. One common online optimization solution is to
apply load shedding [5]; however, this randomly drops data
units at certain time points based on resource thresholds, in
order to reduce the load without considering the importance
of the data and as a result significant information may get
lost.

In this paper we investigate the problem of adaptive
rate allocation within a DSPS in order to meet the end-
to-end execution time requirements of distributed stream
processing applications under burstiness. We summarize our
contributions below:
• We present RADAR, our system that dynamically

determines the data rates of the application components
on the nodes of a DSPS under bursty workloads.
RADAR uses measurements of elapsed times, applica-
tion projected latencies and measurements of resource
loads to dynamically determine the rate allocation for
distributed real-time stream processing applications to
meet their end-to-end timeliness and rate demands.

• We develop a distributed constrained optimization for-
mulation of the problem based on the Lagrange Multi-
pliers technique, and provide a distributed and low-cost
method to solve it. Our approach manages to solve the
optimization problem in a distributed manner, where
the initial global optimization problem is decomposed
into a set of subproblems, that can be solved with local
processing and communication among the components
of the applications. Moreover, it renders the rate al-
location optimization problem amenable to completely
decentralized implementation, where a global optimiza-
tion problem is turned into a local one, whose solution
requires only low-overhead coordination between the
nodes involved.

• We have run extensive experiments over PlanetLab
[6] to validate our approach. Our experimental results
illustrate that our approach effectively meets applica-
tion real-time demands, depicts good performance and
outperforms its competitors.

II. SYSTEM ARCHITECTURE AND MODEL

A. The Synergy System

We have built our approach in our distributed stream
processing system called Synergy[7]. Synergy is a wide-
area stream processing middleware that comprises a set
of distributed nodes denoted as ni, connected via virtual
links denoted as lj . The goal of Synergy is to support the

Figure 1. Our system architecture.

execution of distributed stream processing applications with
QoS constraints, while efficiently managing the system’s
resources. Synergy is built as an overlay on top of the Pastry
peer-to-peer network and runs on Planetlab [6]; it leverages
the Pastry location and routing protocols for registering and
discovering available application components and streams
in a scalable manner. It implements a monitoring module
for building resource utilization profiles (CPU load, network
bandwidth) and maintaining application latency measure-
ments and a fully distributed composition module that selects
and instantiates application components at runtime. Figure
1 shows the Synergy architecture.

B. System Model

A distributed stream processing application in the system
is modeled as an application graph, where each node in the
graph represents a service invoked by the application. Each
service represents a processing function. The instantiation of
a service on a node is called a component; a service can be
instantiated at multiple nodes in the system and invoked by
different applications. A component operates on individual
chunks of data, named Application Data Units(ADU). The
size of a data unit depends on the type of application.
Examples of data units are sets of measured values (such
as < timestamp, Latitude, Longitude, speed > that we used
in our traffic monitoring application) or can be sequences
of picture or audio frames (for example, in a multimedia
application). A distributed stream processing application
is executed collaboratively by instantiating the appropriate
components on the Synergy nodes.

The user submits a request for a set of q applications,
1 ≤ q ≤ Q to one of the nodes in the system, along with
their respective initial rate requirements rq. The initial rate
requirement rq for an application represents the delivery rate
of data units requested by the application. The application
is characterized by its deadline Deadlineq that represents
the time interval within which the application q should
complete the end-to-end processing for the ADUs of the
rate determined. When submitting a request, the user expects
from the system to instantiate the appropriate components

on the system in order to perform the processing required
by each application, at the rate requested by the application.

Upon reception of a data unit by a node, the data unit is
inserted in the scheduler’s queue waiting to be processed.
The order by which data units are processed, is defined by
the scheduling policy (we currently use FIFO).

Each invoked component ci is characterized by its re-
source requirements uci(j) for each resource j it uses (e.g.
CPU or bandwidth) and its selectivity selci . The selectivity
represents the ratio of output rate to input rate for the
component. The rate requirements and the selectivity of
a component are characteristics of the service run by the
component. These can be provided by the user prior to
application execution or acquired through profiling at run-
time. Note that the execution of a service for an application
can be assigned to more than one components with each
component being responsible for a subset of the data that
will be processed by the component.

III. THE PROBLEM

A. General Optimization Problem

Our general problem formulation develops a constrained
optimization problem. Let C be the set of components that
can be deployed in the system, and Rci be the rate that
each component ci will get. Component rates are constrained
by the rate of the application that invokes them, but their
actual rates depend on the selectivity of the components.
Every application q is represented as a graph of component
invocations that executes on an input data stream and needs
to finish within Deadlineq, which is a relative value. Our
main objective is to maximize the rates for the components
invoked by the applications in the system so that the deadline
requirements of the applications are met and the resource
constraints are satisfied. This is described as:

maximize
∑
ci∈C

Rci (1)

Our maximization function suggests that we choose to
maximize the rates for the components so as to maximize
the system utilization, by identifying the rates that can be
supported by all components in each application graph. The
summation of the components’ rates will be maximized with
respect to the following constraints:
End-to-End Target Time Constraint. Our goal is to meet
the end-to-end deadlines of the applications. In order to en-
sure that the application executes within its Deadlineq, the
sum of the computation times of all the components invoked
by the application q and the corresponding communication
times (that we denote end-to-end execution time) need to be
smaller that the application deadline. This can be expressed
as follows:

ExecT imeq ≤ Deadlineq (2)

where:

ExecT imeq = maxpath(
∑
ci∈q

Compci(Rci) ∗ CPUci

+
∑
ci∈q

Commci−>ci+1(Rci)) (3)

where maxpath is used in the case that the application is
represented as a graph with more than one paths, so that the
end-to-end execution time of the application is the maximum
path latency. In the above equation, Compi(Rci) represents
the average computation time required for component ci to
execute at rate Rci , obtained through profiling techniques
with low overhead, and Commci−>ci+1(Rci) represents the
corresponding communication time between components ci
and ci+1. CPUci denotes the average percentage of CPU
for component ci to process one ADU and depends on
the scheduling policy used. In our technique we use FIFO
scheduling policy.
Resource Constraint. All components on a processor are
competing for available CPU resources. This constraint
states that the sum of the rates allocated to each component
multiplied by the CPU share required to process each ADU
must be smaller than the fraction of available resources. For
each node we denote:∑

ci∈n

Rci ∗ CPUci ≤ 1 ∀n ∈ Nodes (4)

We focus our attention to the processing resource (CPU
capacity), as this is the sparsest resource in processing inten-
sive environments such as the distributed stream processing
systems that we consider. CPUci represents the average
percentage of CPU, for component ci to process one ADU,
within Deadlineq.
Flow Conservation Constraint. Additional constraints that
need to be taken into account are the flow conservation
constraints. Such constraints represent the relation between
the input and the output rates of a component, defined by
the selectivity of the component. The selectivity selci of a
component ci represents the average ratio of the number of
output data units to the number of input data units of ci. The
selectivity of each component depends on the service run by
the component. Then the flow conservation constraints are
represented as:

Rci+1 = selci ∗Rci ∀ci ∈ Components (5)

Rate Constraint. Moreover, we denote minimum and max-
imum rate constraint for each component that should be
defined before instantiating the component :

MinRateci ≤ Rci ≤ MaxRateci ∀ci ∈ Components (6)

Discussion. It is also important to notice that the burst
occurring at one application component of a node can affect
multiple applications running components on that node. This
can potentially create queueing delays at components run-
ning in remote nodes. Thus, RADAR solves the optimization
problem not only for the bursty node, but for all nodes

affected by the burstiness, that is, all nodes running com-
ponents of the affected applications. When a burst occurs,
RADAR uses the maximization function (1) to define the
rates of the components on all affected nodes. The resource,
rate and flow conservation constraints are given by equations
(4), (5) and (6) respectively. For each application executing
components on the affected nodes RADAR computes the
end-to-end execution time of the applications using equation
(2) to determine whether the latencies of the applications are
too high causing the applications to miss their deadlines. In
the next section we describe our distributed technique for
solving this constrained optimization problem.

B. Distributed Optimization Formulation
Observation 1. In our framework we can consider several
functions to model the computation time of the components
as a function of the data rate. However, works like [8] have
shown that there is a linear relationship of the execution
time and the data rate, in other words the running time can
be expressed as a linear function of the input data rate of
the component. This can be expressed with the following
equation:

Compci(Rci) = Cci ∗Rci (7)

where Cci represents the computation time of component
ci per data unit. Similarly, we can consider communication
time Commci−>ci+1(Rci) as a linear function of the com-
ponent’s input data rate.
Lemma 1. Given Observation 1, our optimization problem
is an instance of linear optimization (LP).

Our optimization problem is optimizing equation (1)
given constraints (2), (4), (5), (6). We note that equation(2)
can be expressed using (3) and (7), and for equation (3)
the maximum can be computed once, before forming the
optimization problem because it is based on the graph that
remains static during our optimization step.
Solving the problem with a Distributed Technique: To
solve the constrained maximization problem we first convert
it to an unconstrained maximization problem by the method
of Lagrange multipliers [9], [10]. This method allows us to
relax the constraints, i.e. add the equality and the inequality
constraints to the objective function by multiplying them
by some non-negative values, the Lagrange multipliers and
the KKT multipliers respectively, which can be viewed as
penalties for violating the constraints. There must be one
Lagrange multiplier for each equality constraint and one
KKT multiplier for each inequality constraint.

We define that the system is congested when at least one
of the following constraints is violated (i.e., ExecT imeq >
Deadlineq or

∑
ci∈n Rci ∗ CPUci > 1). In the dynamic

environment that we consider, application rates may increase
or decrease dynamically without a priori notification. This
can lead to congestion or underutilization of the system
resources respectively. Thus, the system must be able to
adapt to such dynamic workloads quickly, by implementing
optimization solutions that are highly efficient at runtime,

to recompute the highest rates that the system can provide
to each component based on the global constraints. This is
done in a distributed and iterative manner using the Lagrange
Multipliers method.
Lagrange Multipliers Method. We define the Lagrangian
of the original optimization problem as:

L =
∑
ci∈C

Rci −
∑

q∈Apps

λq ∗ (ExecT imeq −Deadlineq)

−
∑

n∈Nodes

λn ∗ (
∑
ci∈n

Rci ∗ CPUci − 1)

−
∑
ci∈C

γci ∗ (Rci+1 − selci ∗Rci) (8)

where λq, λn and γci are the Lagrange and KKT multipliers.
We notice that both the objective and the constraint func-
tions, expressed in terms of component rates, are concave
and continuously differentiable, in the region where the
constraints are satisfied. Hence, finding the maximum for
the objective function is equivalent to finding the maximum
for the Lagrangian, subject to λq, λn ≥ 0, due to the strong
duality. Thus, instead of solving the original optimization
problem, we solve the alternative problem for each compo-
nent ci, given specific values for λq, λn and γci .

In our case, since L is differentiable, the problem can be
solved using the gradient method, that works by iteratively
updating the values of L’s variables until L converges to
some value. Moreover, computing the λq, λn, γci is also
done in a distributed manner, since every variable can be
computed in a different node. We note that the constraint
from equation (6) is imposed independently during iter-
ations (similar to [11]). All of the components compute
their new rate Rci independently at every iteration. After
computing its rate every component should set its value as
min(max(Rci ,minRateci),maxRateci).

Note though, that, the nodes that participate in the above
process are only the ones that host components of the appli-
cation graph that experience the burst. If multiple application
graphs experience bursts, we run the optimization algorithm
for each graph separately.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
We have implemented RADAR over the Synergy middle-

ware [7] and tested it on PlanetLab [6]. RADAR is written
in Java6u26 with approximately 12K lines of code. The
experimental evaluation focuses on the following parame-
ters: (i) Application Rates, (ii) Application End-to-end
Execution Times, (iii) Number of Deadline Misses, (iv)
Throughput, and (v) Scalability. We compare our approach
with the Load Shedding technique[5] which is a commonly
used online technique to address bursts. Load shedding
aims to reduce load by dropping data units at certain time
points based on CPU load thresholds. For the experiments,
we implemented a traffic monitoring application using the
Berkeley’s Mobile Millennium Dataset [12].

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350 400

R
a
te

Time

Application 1
Application 2
Application 3
Application 4

Figure 2. Application injected rates.

 0

 10

 20

 30

 40

 50

 60

 70

 0 50 100 150 200 250 300 350

R
e

c
e

iv
e

d
 R

a
te

s

Time

Application 1
Application 2
Application 3
Application 4

Figure 3. Rates using RADAR.

-60

-40

-20

 0

 20

 40

 60

 0 50 100 150 200 250 300 350D
ro

p
p
e
d
 A

D
U

s
 |
 R

e
c
e
iv

e
d
 R

a
te

s

Time

Application 1
Application 2
Application 3
Application 4

Figure 4. Rates using L.S.

 0

 1000

 2000

 3000

 4000

 5000

Burst1 Burst2 Burst3

T
h

ro
u

g
h

p
u

t

App1
App2
App3
App4

Figure 5. RADAR Throughput over Different
Burst Intensities.

 0

 1000

 2000

 3000

 4000

 5000

Burst1 Burst2 Burst3

T
h

ro
u

g
h

p
u

t

App1
App2
App3
App4

Figure 6. Load Shedding Throughput over
Different Burst Intensities.

 0

 500

 1000

 1500

 2000

App1 App2 App3 App4

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
s

RADAR
Load Shedding

Figure 7. Average end-to-end execution times.

B. Experimental Results

In this section we evaluate the operation of RADAR
under burstiness. We used 4 applications and a total of 16
application components. The applications start 30 seconds
apart so that we are able to observe the behavior of the
other applications when a new one starts. The deadlines of
the applications are set to 1400ms. All applications request
a minimum rate of 5 and a maximum of 20, while the
fourth application is the bursty one where we inject the
additional workload so its maximum rate has to be modified
on runtime. We simulate three different burst intensities,
where the rate of application 4 suddenly increases to 30, 45
and 60 ADUs per deadline time. Figure 2 shows the injected
rates of the applications during the experiment’s lifetime.
Application Rates. Figure 3 shows the rates received by
the applications using RADAR. All applications start with
a maximum rate of 20 and then they adjust their rates
using our approach, based on the applications running on
the system and the availability of system resources. As the
applications execute, they are scheduled according to their
requested rates. RADAR monitors the application execution
and computes their end-to-end execution times. As one
can observe, when application 4 starts experiencing bursts,
RADAR triggers the distributed optimization algorithm and
adjusts the rates of application 4 to its maximum possible
among requested rates. Thus, our approach manages to keep
the application rates within their demands at all times.

Figure 4 shows the rates received by the applications
using the Load Shedding technique. What is shown in the
negative axis in the figure is the corresponding number of
data unit drops caused due to Load Shedding for the different
applications during the bursts. Load Shedding deals with the
problem of the bursty workload by dropping ADUs. As a re-
sult, a large number of ADUs are dropped when bursts occur.
Load shedding violates the minimum rate requirements since

24% of the total rates were below the rate requirement of
the applications. This happens because overload might occur
in multiple nodes in the system and several applications
may get affected. Load shedding reacts to the overload by
dropping ADUs from all applications in the affected nodes,
that will result in a large number of ADUs being dropped
in parallel on multiple nodes, which might be more than
needed to deal with the overload. Furthermore, the dropped
ADUs will have already used resources on previous nodes,
further contributing to the problem of overload.

Throughput. Figures 5 and 6 illustrate the total throughput
achieved in the system during the burst intervals, along with
a breakdown of the throughput of each application, for both
techniques respectively. Our algorithm adjusts the rates to
react to the bursts. As a result the bursts have a small impact
to the system throughput and the impact is constrained
because RADAR triggers and eliminates overload upon the
onset of the burst. On the contrary, the throughput is much
smaller using the Load Shedding technique because when
the burst occurs, the CPU Load on the node increases and
as a result Load Shedding drops a large number of ADUs
to sustain the requested CPU thresholds. As we explained
before, even though the burst happens at application 4, it
affects multiple applications running in the system nodes.

Figure 7 presents the average end-to-end execution times
of all applications running in the system using both tech-
niques. As the figure illustrates, RADAR achieves end-to-
end execution times that are much closer to the Deadline
compared to the Load Shedding technique, which may
complete the execution of the ADUs quicker, but at the
expense of package dropping. As can be observed, using
RADAR, all applications managed to have average execution
times below the Deadline with an average of 1383ms. On
the contrary, Load Shedding had higher execution times with
a total average of 1616ms.

V. RELATED WORK

Distributed stream processing systems have recently be-
come extremely popular for processing high-throughput,
low-latency data streams and a number of such systems have
emerged in the literature (including our own work [7], [13]).

Optimal service composition is proposed in [13] where it
uses a probing protocol and coarse grained global knowledge
to achieve optimal load balancing among the nodes. Our
work targets to maximize the rates, while keeping the QoS
within the users requirements. Amini et al in [14] assume a
DSPS similar to Synergy. Their method relies on feedback
from downstream components and the goal is to maximize
a global system utility. Authors in [15] propose a bin-
packing solution in order to solve the resource allocation
problem that implies a centralized solution. Wen et al in [16]
propose a distributed technique using Lagrange multipliers
like ours, to maximize the P2P streaming in Wireless Mesh
Networks. Nonetheless, their method considers only the link
rate allocation problem among peers.

Lumezanu et al in [4], model the latency assignment
problem for real-time distributed applications as a utility
maximization problem. However, their solution has high
overhead as it runs constantly to adjust the parameters in
the system and for all nodes, as opposed to RADAR that
runs only when a burst is detected using as few nodes as
possible. In [17], they apply a well-known network routing
algorithm to allocate resources on stream processing nodes.
Their method achieves optimal allocation of computing and
bandwidth resources, however it needs time to be effective.

Finally, recent efforts have studied the problem of over-
loads in DSPS. In our previous work [3], we have proposed
the BARRE algorithm for accommodating unpredictable
bursts of the data streams in DSPS. BARRE relies on the
use of an offline phase, where complete system information
is needed in advance. In a similar approach, authors in [2]
also use an offline computation phase for the optimization.
Authors in [5] consider the problem of how to avoid over-
loads in distributed stream processing systems though load
shedding. However, our experimental results illustrate that
RADAR outperforms load shedding techniques. In [18] they
also deal with bursts using a nonprobabilistic model. They
suggest that data streams that enter the system should satisfy
the burstiness constraint to reduce network delays.

VI. CONCLUSIONS

In this paper, we have presented RADAR, our system
for adaptive rate allocation within the Distributed Stream
Processing System in order to meet the end-to-end execution
time and rate demands of the applications. Our approach
determines the rates for each application’s components at
runtime, with respect to the application real-time demands,
to compensate for queueing delays experienced by the
components or to react to sudden bursts of load, in a
distributed manner. Our experimental results illustrate that

RADAR is practical, scalable, depicts good performance and
outperforms its competitors.
ACKNOWLEDGEMENT: This research has been supported by
the European Union and Hellenic Republic Ministry of Education,
Lifelong Learning and Religious Affairs through the Thalis DIS-
FER project, through the Marie-Curie RTD (IRG-231038) project
and by AUEB through a PEVE project.

REFERENCES

[1] L. Abeni and G. Buttazzo, “Resource reservation in dynamic
real-time systems,” Real-Time Systems, vol. 27, no. 2, pp. 123
– 167, July 2004.

[2] Y. Chen, C. Lu, and X. Koutsoukos, “Optimal discrete rate
adaptation for distributed real-time systems,” in Real Time
Systems Symposium, Tucson, AZ, Dec 2007.

[3] Y. Drougas and V. Kalogeraki, “Accommodating bursts in
distributed stream processing systems,” in IPDPS, Rome,
Italy, May 2009, pp. 1 – 10.

[4] C. Lumezanu, S. Bhola, and M. Astley, “Online optimization
for latency assignment in distributed real-time systems,” in
ICDCS, Beijing, China, June 2008, pp. 752–759.

[5] N. Tatbul, U. Çetintemel, and S. Zdonik, “Staying FIT:
Efficient load shedding techniques for distributed stream
processing,” in Proc. of VLDB, Vienna, Austria, Sep. 2007.

[6] PlanetLab Consortium, “http://www.planet-lab.org,” 2004.
[7] T. Repantis, X. Gu, and V. Kalogeraki, “Synergy: Sharing-

aware component composition for distributed stream process-
ing systems,” in Middleware, Melbourne, AU, Nov. 2006.

[8] Y. Wei, V. Prasad, S. Son, and J. Stankovic, “Prediction-based
QoS management for real-time data streams,” in Proceedings
of 27th RTSS, Rio de Janeiro, Brazil, December 2006.

[9] D. P. Bertsekas, Nonlinear Programming. Belmont, MA:
Athena Scientific, 1999.

[10] D. P. Palomar and M. Chiang, “A tutorial on decomposition
methods for network utility maximization,” IEEE Selected
Areas in Communications, vol. 24, pp. 1439–1451, 2006.

[11] S. H. Low and D. E. Lapsley, “Optimization flow control, i:
Basic algorithm and convergence,” IEEE/ACM Transactions
on Networking, vol. 7, no. 6, pp. 861–874, 1999.

[12] J. Herrera, “Evaluation of traffic data obtained via gps-
enabled mobile phones: The mobile century field experiment,”
in Transport. Res. Part C, 2009.

[13] X. Gu, P. S. Yu, and K. Nahrstedt, “Optimal component
composition for scalable stream processing,” in 25th ICDCS,
Columbus, OH, 2005.

[14] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure,
“Adaptive control of extreme-scale stream processing sys-
tems,” in Proc. of 26th ICDCS, Lisboa, Portugal, July 2006.

[15] N. Roy, J. S. Kinnebrew, N. Shankaran, G. Biswas, and
D. C. Schmidt, “Toward effective multi-capacity resource
allocation in distributed real-time and embedded systems,”
in Proceedings of 11th ISORC, Orlando, Florida, May 2008.

[16] J. Wen, J. Cao, K. Xie, and R. Li, “User density sensitive
p2p streaming in wireless mesh networks,” Parallel and
Distributed Computing, vol. 71, pp. 573–583, 2011.

[17] C. H. Xia, D. Towsley, and C. Zhang, “Distributed resource
management and admission control of stream processing
systems with max utility,” in Proceedings of the 27th ICDCS,
Toronto, Canada, June 2007, p. 68.

[18] R. Cruz, “A calculus for network delay. i. network elements
in isolation & ii. network analysis,” IEEE Transactions on
Information Theory, vol. 37, no. 1, pp. 114 – 141, Jan 1991.

