
Towards Real-Time Emergency Response using
Crowdsourcing

Ioannis Boutsis, Dimitrios Tomaras, and Vana Kalogeraki
Department of Informatics

Athens University of Economics and Business
Athens, Greece

{mpoutsis, tomaras, vana}@aueb.gr

ABSTRACT
Crowdsourcing has emerged as an attractive paradigm in
recent years for information collection for disaster response,
which utilizes data received from the human crowd, to pro-
vide critical information collection and dissemination dur-
ing emergency situations and visualize this data to generate
emergency maps for the human crowd. In this paper we in-
vestigate the use of crowdsourcing mechanisms for real-time
emergency response and describe our approach for devel-
oping a crowdsourcing tool that can be effectively used to
formulate questions and seek answers from the human crowd
using a MapReduce programming model, and integrate this
information into a novel spatiotemporal data structure and
create a visual emergency map. Our experimental evalua-
tion shows that our approach is practical, efficient and can
be used for applications with real-time demands.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]

Keywords
Distributed Sensor Systems, Crowdsourcing, SpatioTempo-
ral Data, Emergency Response

1. INTRODUCTION
Over the recent years, the prevalence of social networks,

the ubiquitous sensing capabilities and the widespread adop-
tion of smartphones, are driving the development of appli-
cations and services that are changing the way we interact
with the world and each other. Smartphones equipped with
various heterogeneous sensors along with the ubiquitous con-
nectivity of these devices have introduced new trends on
application development, by providing important real-time
geo-located data.
At the same time, crowdsourcing has emerged as an at-

tractive paradigm that can leverage the collective intelli-
gence of these mobile workers quickly and inexpensively, to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PETRA 2014, May 27-30, 2014, Island of Rhodes, Greece.
Copyright 2014 978-1-4503-2746-6/14/05$15.00.

extract useful information. Typical crowdsourcing systems
constitute marketplaces for tasks, such as AMT [1], mCrowd
[9] etc.; these allow humans or automated systems to define
tasks, while human workers execute them in exchange for
a reward. For instance, mobile human workers can easily
provide traffic information regarding their location, without
needing any expensive infrastructure. Our aim is to exploit
mobile users to perform geo-located crowdsourcing tasks to
extract useful information.

One fundamental challenge in such a setting is how to
store and efficiently retrieve location-based crowdsoucing data
provided by mobile users during emergency situations. Find-
ing densely populated geographic regions in real-time is an
important capability to city personnel, police departments,
etc., especially during rescue and recovery efforts. More
specifically, in this paper, we focus on user trajectories, that
represent the route that a mobile phone user has followed,
along with the respective crowdsourcing data. These can be
either low or high sampling trajectories depending on the
frequency of the tasks assigned to the user and the corre-
sponding answers. Our goal is to provide an efficient way to
index the crowdsourcing data under different levels of spatial
and temporal granularity.

In this paper we present T-Crowd our crowdsourcing sys-
tem that can be effectively used for processing and index-
ing geo-located crowdsourcing tasks during emergency situ-
ations. We summarize our contributions below:

• We develop a crowdsourcing system used to formulate
questions and seek answers from the human crowd us-
ing a MapReduce programming model.

• We propose a novel spatiotemporal index structure for
user mobile trajectory data, to create indexes over dif-
ferent geographic region granularities.

• We provide an experimental evaluation, that illustrates
that T-Crowd is practical, efficient and can answer
range queries extracted from crowdsourcing tasks in
real-time.

2. A MOBILE CROWDSOURCING SYSTEM
Our Crowdsourcing platform has been developed using the

Misco system [4, 3, 5] , a MapReduce framework tailored for
mobile devices. MapReduce requires that the computational
process will be decomposed into two steps, namely map and
reduce tasks. Misco adopts a distributed task programming
model based on the MapReduce model, which is a extensi-
ble and efficient way to program applications. It provides

Figure 1: Crowdsourcing Mobile Application (a)
Waiting Screen, (b) Push Notification, (c) Map Task

a powerful programming abstraction to ease software de-
velopment, while hiding many of the distributed computing
complexities from the programmer.

2.1 The T-Crowd Mobile App
Our architecture is based on the MapReduce program-

ming model and structured as one logical Master Server and
a number of Worker Nodes (the human contributors in the
system take the role of the worker nodes). The Server is
in charge of keeping track of query requests submitted by
the users and assigning tasks to Workers. The Server is
multi-threaded, spawning a new thread to handle incoming
worker connections. Queries are instantiated and managed
by human requesters, using a browser interface.
The main responsibility of the Worker node is to process

map tasks and return the results to the server. Each task
is characterized by a unique TaskId for the task to exe-
cute, the location of the task in terms of latitude and longi-
tude, an estimation of its urgency and potentially the task
description. Crowdsourcing tasks can be typically executed
by workers through their personal devices such as mobile
devices or cellphones. Nevertheless our system focuses on
mobile users since the location plays an important role on
the user selection.

2.1.1 Task assignment
Suppose that the crowdsourcing server has selected a sub-

set of the users to execute a crowdsourcing query. We de-
scribe the step-by-step sequence followed in each of the An-
droid devices to process the query.
In the implementation described below we show how we

utilize the Android SDK that provides the API libraries and
developer tools necessary to build, test, and debug apps for
Android1. Every Android application is typically a separate
process that can be composed of the following components:
Activities for graphical display, Services for background
tasks, Content Providers for accessing persistent data and
Broadcast Receivers for receiving notifications.
Since users are mobile they might change connections of-

ten, such as switching from WiFi to 3g. In order to be able
to track the users without being restricted by the type of
connection and possible private IP restrictions (NAT) we
use Push Notifications to initiate the communication with
the users of the crowdsourcing application. Push notifica-

1Android platform: http://www.android.com/

tion services (PNS) allow users to register for delivery of
messages. An application server sends the messages to a
connection server, which is operated by the platform owner
and pools messages from all application servers a particular
user has registered for, and sends the pooled messages to the
user. Such push-notification services are supported in every
major mobile (Google Cloud Messaging service (GCM) in
Android, Apple Push Notification Service in iOS and Mi-
crosoft Push Notification Service in Windows Phone).

In order to start receiving tasks, the user would first need
to login to our system. During normal operation the T-
Crowd app would run in the background, since we cannot ex-
pect the users to constantly use the App (Figure 1a). When
the server selects a user to execute a crowdsourcing task the
crowdsourcing server delivers a push notification to the user
devices, selected from the Scheduling policy, through the
Push Notification service, to trigger the application. These
notifications are implemented as the Broadcast Receivers for
Android. Once the BroadcastReceiver receives the notifi-
cation it alerts the user (Figure 1b). If the user opens the
notification an Alert Dialog Box pops-up on the screen, so
that the user can decide whether to accept the task execu-
tion. In the case that the user decides to accept the task the
Crowdsourcing application is triggered and the task will be
displayed in the user screen (Figure 1c). Finally, the combi-
nation of all the answers in the reduce phase will provide the
result of the crowdsourcing task. In our system we store the
answers of each individual user as described in the following
section. This enables us to perform aggregation queries in
different ranges than the original query, by exploiting results
from several crowdsourcing tasks.

3. THE DATA STORAGE STRUCTURE
In the bibliography, one can find different types of data

structures that can be used as indices [2, 6]. Each of them
has its own purpose, some of them such as R-trees and STR-
trees have similar methods of organizing the data into their
leaves, similar insertion and splitting strategy, but with dif-
ferent goals on what information can implicitly or explicitly
be stored.

3.1 Enhanced Trajectory Bundle Tree
Our approach to the solution makes use of Trajectory

Bundle trees [2],[7]. Trajectory Bundle trees are a special
kind of R-trees, that are very useful to create indices over
geographic regions, using rectangular boundaries, known as
mininum round boxes (MRB) or minimum round rectan-
gles(MRR). Trajectory Bundle trees store whole trajectories
on their leafs, and to make it more specific, each node stores
M segments(fanout) from only one trajectory. In the case
that the trajectory is splitted to more than M segments, a
new leaf node is created and both leaf nodes are connected
through a double-linked list. We developed an enhanced
version of the TB-trees and from now on we will refer to it
as ETB-tree, that works as follows:

3.1.1 Segments
Trajectory segments can be modelled by using the follow-

ing information: 1) SegID : the ID of the segment which is
unique, 2) TrajectoryID : the ID of the trajectory to which
the segment belongs to, 3) Starting and End Point : the
starting and the end point of the trajectory segment. We
use this format in order to store all segments in a database.

However, on our extended tests with two different datasets,
we store this kind of info on the node, i.e. each leaf nodes
uses two integers for storing trajectoryID,userID and some
arrays in order to keep SegIDs, segment latitude, segment
longitude respectively, but we are on the process of remov-
ing unnecessary information and to keep what is really nec-
essary.

3.1.2 Leaf Nodes - Internal Nodes
Some characteristics are the same for both types of nodes.

Each node has its unique Node ID, used for the storage
on a hashmap. We use a hashmap that maps <Node ID>
to <Node Reference> in our ETB-tree implementation for
keeping all the references of our nodes in order to achieve
fast fetching results from the hashmap.

Figure 2: An enhanced Trajectory Bundle Tree.

Internal Nodes. Inner nodes follow the philosophy and
the design of those used in R-trees. Inner nodes also follow
the same policy with leaves. Thus, they have a maximum
capacity for storing IDs of MRRs. Also, they do not just
keep the minimum but also the maximum coordinates of
IDs inserted to this node and also the minimum and the
maximum timestamp. In other words, this describes the
coverage area that each node overlaps and also the time
range during which this area is covered. Inner nodes also
store information about the current number of entries of
the node, and also they keep information about the level
of the tree they belong. In our implementation, we take
advantage of this information, by using the level of inner
nodes in order to initiate the creation of leaves. In the case
of adding a specific segment that will initiate the process of
creation of a new leaf, a “split” process, almost same as that
of original TB-trees (where we find the most right free entry
to insert the new leaf), will also begin and will update all
the necessary info (MRR limits and timestamp limits) up to
the root of the tree.
Leaf Nodes. In leaf nodes, we need to keep the fanout,

denoted as maxNumKeptSegments, i.e., the capacity of seg-
ments that each leaf can store, which is the same for all
trajectories. Traditional TB-trees maintain a double linked
list of nodes of the same trajectory on the leaf level, i.e., leaf
nodes of the same trajectory are connected with a double-
linked list in order to retrieve trajectory segments with tra-
jectory identifier as the key and in such way that will pre-
serve trajectory evolution. On the contrary, we use hashmaps
in order to achieve better results over the fetch procedure
of same trajectory nodes. We also store the userID as one

more key element to preserve one of the fundamentals of
the traditional TB-trees, which is that different trajectories
are stored in different leaf nodes. Finally, we need to store
the segments of the trajectory and for this case we use an
array initialized to maxNumKeptSegments. In the case that
there is no available space to store the segment, our method
returns a negative number that will initiate the process of
adding a new leaf node, with a splitting strategy that is
described in the next section. Leaf nodes also maintain a
hashmap for mapping segment ids to a pair of timestamps:

SegID,<Segm. Timestamp Start , Segm Timestamp End>

This strategy leads to a very handy way of coping with time
window queries, or even queries for a specific time interval,
as every leaf node keeps track of the timestamped values of
stored segments, and also the minimum and the maximum
timestamp value.

3.2 Algorithms of ETB-tree

3.2.1 Insertion - Splitting Algorithm
Our approach inherits the insertion algorithm from tradi-

tional TB-trees. We descend the tree until we reach the last
level of inner nodes by using MRR limits. This is where we
can find the candidate parent node of our leaf, into which we
are going to store the segment id. Then, we search for the
candidate leaf, by using the combination of trajectory ID,
MRR limits, and user ID. In the case of a different trajec-
tory, or user, or even if we reach full capacity of the current
candidate node, we follow a right-most policy of node inser-
tion. In other words, we find the rightest free child, if it does
not exist, we create it and add it as a child to the current
parent node. If the maximum capacity of node is reached,
then we trigger a splitting-like process that can be trans-
ferred up to the root of the tree. Following this policy, one
can observe illustratively that our tree expands from left to
right, in all levels, as the splitting process is being triggered,
same as with the TB-tree.

3.2.2 Retrieval Algorithm
Part of our contribution is over the retrieval algorithms

used for support of many kind of queries, especially over
navigational queries. We take advantage of hashmap fun-
damentals, as we know that we have a fast retrieval of any
value stored. For example, when we want to execute a range
query to the tree, despite running a BFS algorithm, we take
advantage of the fact that node references are stored to the
hashmap, and for this case, we make a linear search over
nodes of last inner level that overlap with the requested
MRR limits. For that reason, instead of querying N nodes,
we just query logC N nodes, where C is node capacity and
N the total number of nodes.

4. EXPERIMENTAL EVALUATION
For our experiments we have developed a dataset that con-

tains 23577330 segments, very dense-sampled (every 5 secs),
stored on a MySQL database server. Experiments were con-
ducted on a Linux Server provided by GRNET academic
program “okeanos”, dual core 2.1Ghz, with 6GB Ram.

The following figures provide the results for two different
kinds of queries: (i) the average speed into a specific MRRed
region within a time window and (ii) the average length of

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

10 90 140
178

A
v
e
ra

g
e
 I
n
s
e
rt

 T
im

e
 i
n
 m

s
e
c

Number of users in tree

Best Case

Average Case

Worst Case

Figure 3: Average Insert Time

 0

 50

 100

 150

 200

 250

10 90 140
178

L
e
n
g
th

 R
e
tr

ie
v
a
l
(m

s
e
c
)

Number of users in tree

Best Case

Average Case

Worst Case

Figure 4: Average Length Retrieval
Time

 0

 50

 100

 150

 200

 250

10 90 140
178

S
p

e
e

d
 R

e
tr

ie
v
a

l
(m

s
e

c
)

Number of users in tree

Best Case

Average Case

Worst Case

Figure 5: Average Speed Retrieval
Time

trajectories in this region. We provide results for (i) the
worst case, where we need to search the whole MRR range
and time window kept by our tree, (ii) the average case over
all queries to fetch the results from our tree, examining a
rather large area defined by the MRR range, but not as
big as in the worst case, and (iii) the best case, where we
just search for a small limited area, to retrieve the results
regarding the defined queries.
Figure 3, shows the time needed for the insertion of a

segment in our tree. As can be observed the time needed
to insert a segment remains almost the same as the users
increase, due to our structure. In addition, the insertion
time is less than 0.008ms even in the worst case, providing
a high speed solution for such systems, where we expect
multiple parallel insertions for different workers. Moreover,
in figure 4 and 5, we present the time needed to retrieve the
aggregated data for the defined queries. As the figures show,
the time needed for all cases is almost the same, despite the
population of users stored in the tree. Another interesting
result is that the time needed for average speed retrieval and
for average length of trajectories retrieval in the average case
is almost the same with that of the best case.

5. RELATED WORK
Storing and indexing the users’ movements has attracted

interest in recent years in different application domains, such
as traffic monitoring, road and social recommendation sys-
tems, ride-sharing applications and personalized driving di-
rections. Several papers have been proposed in the context
of indexing and storing trajectory data [2, 7, 8]. However,
most of these works either present different kind of methods
in order to process trajectory data or take advantage of users
repetitive behavior such as traveling back home or going at
work, at which they tend to follow similar paths. In [2],
there is the presentation of the data structure of TB-tree,
that is compared to STR-tree and R-tree, and what types of
queries should be supported in general by those kind of in-
dices. Authors in [7] used a traditional TB-tree, as an index,
to implement their own FlowScan algorithm for discovering
hot routes. In our work, we use this enhanced version of
TB-tree to answer different types of queries (mostly combi-
national queries) such as, time-window and regional queries,
while at the same time keeping our data structure, as simple
as we can.

6. CONCLUSIONS
In this paper we have presented our crowdsourcing system

for efficient processing and indexing of geo-located crowd-
sourcing tasks during emergency response. Our system com-

prises the following components: (a) a crowdsourcing system
for mobile devices, based on the MapReduce paradigm, that
is able to perform geolocated crowdsourcing and crowdsens-
ing tasks and collect user mobile data, and (b) a novel data-
structure for preserving the geo-located user answers of the
tasks and perform aggregation queries under different levels
of location granularity and in real-time. Our experimental
study verifies the practicality of our approach and its effi-
ciency for real-time response systems.

Acknowledgment
This research has been co-financed by the European Union
(European Social Fund - ESF) and Greek national funds
through the Operational Program “Education and Lifelong
Learning” of the National Strategic Reference Framework
(NSRF) - Research Funding Program: Aristeia - INCEP-
TION, Thalis - DISFER.

7. REFERENCES
[1] Amazon mechanical turk. http://www.mturk.com/.

[2] Y. T. Dieter Pfoser, Christian S. Jensen. Novel
approaches to the indexing of moving object
trajectories. VLDB, pages 395–406, September 2000.

[3] A. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen,
and V. H. Tuulos. Misco: a mapreduce framework for
mobile systems. In PETRA, June 2010.

[4] A. J. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikinen,
V. Tuulos, S. Foley, and C. Yu. Data clustering on a
network of mobile smartphones. In SAINT, pages
118–127, Munich, Germany, July 2011.

[5] T. Kakantousis, I. Boutsis, V. Kalogeraki,
D. Gunopulos, G. Gasparis, and A. Dou. Misco: A
system for data analysis applications on networks of
smartphones using mapreduce. In MDM, pages
356–359, Bengaluru, India, July 2012. IEEE.

[6] K. Z. X. Z. Ke Deng, Kexin Xie. Trajectory indexing
and retrieval. Computing with Spatial Trajectories,
(Chapter 2), 2011.

[7] X. Li, J. Han, J.-G. Lee, and H. Gonzalez. Traffic
density-based discovery of hot routes in road networks.
In SSTD, pages 441–459. Springer, 2007.

[8] M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-temporal access methods. IEEE Data Eng.
Bull., 26(2):40–49, 2003.

[9] T. Yan, M. Marzilli, R. Holmes, D. Ganesan, and
M. Corner. mcrowd: a platform for mobile
crowdsourcing. In SenSys, pages 347–348, Berkeley,
CA, USA, November 2009. ACM.

