
Dynamic Reduce Task Adjustment for Hadoop Workloads

Vaggelis Antypas
Department of Informatics

Athens University of
Economics and Business

Greece
antypas@aueb.gr

Nikos Zacheilas
Department of Informatics

Athens University of
Economics and Business

Greece
zacheilas@aueb.gr

Vana Kalogeraki
Department of Informatics

Athens University of
Economics and Business

Greece
vana@aueb.gr

ABSTRACT
In recent years, we observe an increasing demand for systems
that are capable of efficiently managing and processing huge
amounts of data. Apache’s Hadoop, an open-source imple-
mentation of Google’s MapReduce programming model, has
emerged as one of the most popular systems for Big Data
processing and is supported by major companies like Face-
book, Yahoo! and Amazon. One of the most challenging
aspects of executing a Hadoop job, is to configure appropri-
ately the number of reduce tasks. The problem is exacer-
bated when multiple jobs are executing concurrently com-
peting for the available system resources. Our approach
consists of the following components: (i) an algorithm for
computing the appropriate number of reduce tasks per job,
(ii) the usage of profiler-jobs for gathering information nec-
essary for the reduce task computation and (iii) two different
policies for fragmenting the reduce tasks to the available sys-
tem resources when multiple jobs execute concurrently in the
cluster. Our detailed experimental evaluation using traffic
monitoring Hadoop jobs on our local cluster, illustrates that
our approach is practical and exhibits solid performance.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]

1. INTRODUCTION
Nowadays we observe a huge increase in the amount of

information that is generated in a daily basis. A plethora
of different data-intensive applications (e.g. data mining
and web indexing) run daily by major IT companies such
as Facebook [1] and Yahoo! [2], that access ever-expanding
data sets ranging from a few Gigabytes to several Terabytes
or even Petabytes of data. For example, Facebook collects 15
Terabytes of data each day and applies business-intelligence
and ad-hoc analysis [3]. This huge amount of data needs to
be processed in a fast and scalable way. Consequently, tra-
ditional approaches (e.g. Database Management Systems -
DBMS) are no longer sufficient. Arguably one of the most

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PCI 2015, October 01-03, 2015, Athens, Greece
c© 2015 ACM. ISBN 978-1-4503-3551-5/15/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2801948.2801953

popular systems that was developed to support all these fea-
tures is Google’s MapReduce [4]. MapReduce enables the
easy development of scalable parallel applications to process
vast amounts of data on large clusters of commodity ma-
chines. The success of the MapReduce programming model
led to the development of Hadoop [5], an open-source im-
plementation of MapReduce. Several companies (including
Facebook and Yahoo! among others) use Hadoop on a reg-
ular basis for processing large amounts of data for various
internal purposes [6].

One of the most demanding aspects of executing different
processing jobs in Hadoop is to appropriately configure the
jobs in order to achieve the best possible performance in
terms of completion time. For this matter, Hadoop enables
its users to tune a plethora of configuration parameters (a set
of which can be seen in Table 1) that affect the performance
of jobs. One of the most important parameters that can
affect the observed job’s execution time is the number of
reduce tasks. This parameter controls the parallelism in
the reduce phase and can significantly decrease its execution
time. However, detecting the appropriate number of reduce
tasks can be a challenging endeavor as it depends on the
processing performed by the job and the amount of input
data [7]. The problem is exacerbated when multiple jobs
execute concurrently and compete for the available system
resources. There have been some recent proposals that try to
address this problem [8] and [9]. However, both approaches
consider only cases where the jobs execute serially, so they do
not examine the implications of the problem when multiple
jobs are submitted concurrently. Finally, works like [10], and
[11] optimize several configuration parameters (including the
number of reduce tasks) for a single-job execution, so they
do not focus on how resources should be distributed between
concurrently running jobs.

In this work we aim to provide a tool that will enable the
automatic configuration of the number of reduce tasks per
job. By tuning this parameter we can improve the paral-
lelism in the second phase of the MapReduce computation;
reducing the job’s completion time. We examine the prob-
lem in cases where multiple jobs execute concurrently (i.e.
Hadoop workload) [12] in the cluster and they must share the
available resources (i.e. reduce slots). Our scheme has the
following steps: Initially, we compute the appropriate num-
ber of reduce tasks for each job using historical information
regarding the input dataset, as well as information about the
nature of the processing that each job aims to perform. In
the case that we do not have historical data about the sub-
mitted job we invoke a small profiler-job for gathering the

203

Configuration Parameter Description Default Value
mapred.reduce.tasks Number of reduce tasks 1

dfs.block.size Size in bytes of each data block in HDFS 128m
mapred.compress.map.output Whether or not to compress the output of map tasks false

io.sort.mb Map buffer size in MB 100
io.sort.factor The number of streams to merge at once in the sort phase 10

Table 1: Basic Configuration Parameters in Hadoop

Pa
rt

it
io

ni
ng

 F
un

ct
io

n:

Reduce Phase Map Phase

Part 1

Part R

…

Split 1

Split N

… … …

Reduce()
𝑘2, [𝑣2] 𝑘3, [𝑣3]

Map()
𝑘1, 𝑣1 𝑘2, [𝑣2]

Map() Reduce()

…

… …

…

Map Slot

Map Slot

Reduce Slot

Reduce Slot

Figure 1: MapReduce Model

necessary information for the reduce tasks computation. Fi-
nally, in the case that the sum of the reduce tasks computed
for each job is greater than the available reduce slots, we ex-
amine different techniques for distributing the reduce tasks
to the available slots. In summary, the key contributions of
this paper are as follows:

• We design an algorithm for computing the appropriate
number of reduce tasks per job utilizing statistics from
past execution runs.
• We invoke small profiler-jobs on a sample of the input

datasets when we do not have historical data for the
submitted jobs. These profiler-jobs perform the same
computations on their map phase as their correspond-
ing actual jobs, but execute on a small sample of the
input dataset.
• We implement two different algorithms for fragment-

ing the computed reduce tasks to the available cluster
resources (i.e. reduce slots).
• We conduct thorough experimental evaluation with ac-

tual traffic monitoring jobs that execute in the city of
Dublin in our local cluster indicating the benefits of
our approach.

2. MAPREDUCE BACKGROUND
MapReduce [4] is a programming model for processing

large data sets. Users define two functions, the map func-
tion and the reduce function with the the following specifi-
cations: map(k1, v1) ⇒ [k2, v2] and reduce(k2, [v2]) ⇒ [k3, v3]

. The map function takes as input key/value pairs, pro-
cesses them and generates intermediate key/value pairs. The
system merges all the intermediate values associated with
the same intermediate key and forwards them to the reduce
function. The reduce function receives as input each inter-
mediate key along with its list of values and produces the
final output, which also comes in the form of key/value pairs.

A visual representation of the above steps can be seen in Fig-
ure 1. Users can define the number of tasks that will invoke
these functions. Map/Reduce tasks execute in the available
map/reduce slots. Slots are the system resources (i.e. CPU
cores) reserved by a job, and provide a limit on the amount
of tasks that can run concurrently in the cluster.

Hadoop [5] is the most commonly used open-source imple-
mentation of the MapReduce programming model. Hadoop
consists of two main components: The Hadoop MapReduce
module which enables the parallel processing of very large
data sets using the MapReduce paradigm, and the Hadoop
Distributed File System (HDFS) which is responsible for
the reliable storage and management of data. We focus on
Hadoop’s MapReduce module as it is the component we en-
hanced in order to support dynamic reduce task adjustment.
Hadoop’s MapReduce module is based on a master-slave ar-
chitecture. It comprises one ”master”node called JobTracker
and a number of ”slave” nodes called TaskTrackers. The
JobTracker essentially serves as the link between the users
and the system. More specifically, it handles the MapRe-
duce jobs that the users submit, inserting them in a queue
of pending jobs which are executed (by default) on a FIFO
basis. Each job consists of multiple map and reduce tasks
that execute the user-defined functions. The JobTracker
is responsible for the assignment of map and reduce tasks
from each job to the TaskTrackers. The latter execute these
tasks in the available map and reduce slots and also man-
age data movement between the map and reduce phases.
Map/Reduce slots depict how many concurrent map/reduce
tasks can execute in the corresponding slave node.

3. METHODOLOGY
The objective in our work is as follows: Given a Hadoop

workload consisting of multiple jobs that execute concur-
rently, our goal is to automatically adjust the reduce tasks
used per job in order to minimize the workload’s end-to-end
execution time (i.e. makespan). The problem is not trivial
as we have to detect the appropriate number of reduce tasks
per job and then fragment these quantities to the available
reduce slots. The last step is necessary in order to enable the
parallel execution of the jobs’ reduce tasks in the available
reduce slots.

3.1 Reduce Task Adjustment
The first step for solving our problem is to detect the ap-

propriate number of reduce tasks per job. We propose an
algorithm that adjusts the reduce tasks based on the inter-
mediate data size and the reduce task’s buffer size. The
algorithm aims to keep the intermediate data in the reduce
tasks’ in-memory buffers in order to minimize the amount
of disk spills and thus decrease the reduce phase completion
time. In order to invoke the algorithm we need prior knowl-
edge of the intermediate data size. We get this information

204

either by prior execution runs of the jobs or by invoking
short-term running profiler-jobs.

Dynamic Reduce Task Adjustment Algorithm. We
propose an algorithm that runs prior to the submission of
the jobs in the Hadoop cluster and computes the appropriate
number of reduce tasks. It accomplishes this by having a
prior knowledge of the size of the key/value pairs that each
job generates in its map phase. So in order to run this
algorithm it is necessary to have past execution runs of the
jobs that are assigned for execution.

First we iterate through all the input files that comprise
our jobs’ input. So for each input file, we compute the num-
ber of lines and multiply that number with the approximate
size of a typical map record (key/value pair) generated by
the jobs. That computation gives us the file’s map output
size. If we assume repetitive jobs in our cluster similar to
[13], we can compute the typical map record size from past
runs. So let fsf , f ∈ {1, ..., nfiles} be the map output size
of the f -th input file, while linesf be the number of lines
of file f , mrsj be the approximate size of each map record,
TMOSj , j ∈ Jobs be each job’s total map output size and
selj the selectivity of the job j which depicts the ratio of
map output records to map input records. Then we can
calculate each file’s map output size fsf as follows:

fsf = linesf ×mrsj × selj , ∀f ∈ {1, ..., nfiles} (1)

and we can computate each job’s total map output size as
follows:

TMOSj =

nfiles∑
f=1

fsf , ∀j ∈ Jobs (2)

Once the TMOSj value has been calculated based on the
entire input, we can compute the number of reduce tasks for
each job. We do this is by dividing the total map output size
(TMOSj) with the size of the reduce task’s buffer. Applying
this computation enables us to use as many reduce tasks as
possible, so that the amount of data that each task will
have to process is smaller than (or at the most equal to)
the reduce task’s buffer size. In the case that this is not
possible, the reduce tasks have to spill data to the disk and
retrieve them again when they have adequate space in their
buffer. This is a time consuming procedure that naturally
has a substantial negative effect on the job’s performance
(i.e. completion time). So let rtasksj , j ∈ Jobs be the
appropriate number of reduce tasks for each of our Hadoop
jobs. Also let rbs be the reduce task’s buffer size. Then
we have the following Equation for the computation of the
appropriate number of reduce tasks:

rtasksj = dTMOSj

rbs
e, ∀j ∈ Jobs (3)

All the steps that were described in this Section comprise
our algorithm for the calculation of the appropriate number
of reduce tasks, which can be seen in Algorithm 1.

Profiler-jobs. The previously described algorithm re-
quires prior knowledge about the average intermediate data
size of the submitted jobs and the selectivity metric. So in
case that this information is not available we propose the us-
age of profiler-jobs for gathering the necessary data. Profil-
ing is a commonly used technique [9], [14] for estimating con-
figuration parameters’ impact on the performance of Hadoop
jobs. These profiler-jobs perform the exact same computa-
tions at their map phase as their corresponding Hadoop jobs,

Algorithm 1 Dynamic Reduce (DR) Task Adjustment Al-
gorithm

1: Input: Jobs: the list of the assigned jobs, rbs: the reduce
task’s buffer size.

2: Output: rtasks[]: The reduce tasks to use per job.
3: job counter ← 0
4: for j ∈ Jobs do
5: mrsj ← estimateMapRecordSize(j)
6: selj ← estimateSelectivity(j)
7: TMOSj ← 0
8: for all f ∈ job.input files do
9: linesf ← countF ileLines(f)

10: fsf ← linesf ×mrsj × selj
11: TMOSj ← TMOSj + fsf

12: rtasks[job counter]←
⌈
TMOSj

rbs

⌉
13: job counter ← job counter + 1
14: return rtasks[]

but work on a small sample of the jobs’ input.
We run our profiler-jobs on a sample input and after their

map tasks have finished their processing and have produced
all their key/value pairs (i.e. intermediate data), we consider
them finished. Reduce tasks do not process their input data
since all we need is the size of the reduce tasks’ input. In
other words if we had their reduce tasks perform some type
of processing, it would only increase the completion time to
no avail.

We then retrieve the size of their intermediate data, the
amount of intermediate records and the amount of input
records through Hadoop’s Counters class. We get the amount
of intermediate records via the MAP OUTPUT RECORDS

Counter, we use MAP OUTPUT BY TES Counter for get-
ting the intermediate data size and MAP INPUT RECORDS

Counter for retrieving the amount of input records. We com-
pute the average intermediate data size (i.e. mrsj in Equa-
tion 1) and the selectivity (i.e. selj in Equation 1) via the
following Formulas:

mrsj =
MAP OUTPUT BY TES

MAP OUTPUT RECORDS
(4)

selj =
MAP OUTPUT RECORDS

MAP INPUT RECORDS
(5)

Then we compute the number of reduce tasks per job by
applying Algorithm 1. The only difference is that when
profiler-jobs are applied, the estimateMapRecordSize and
estimateSelectivity functions return the record’s size and
the selectivity as they are computed via Equations 4, 5.

3.2 Reduce Slots Allocation
Because the available reduce slots may be significantly

smaller than the computed number of reduce tasks, we en-
hance our previous approach by adjusting the reduce tasks
further in such cases. The goal is to limit the reduce tasks
used per job so that their sum is equal to the available reduce
slots and thus they can execute in parallel [12]. We con-
sidered two well-known allocation algorithms for achieving
our goal [15], [16]. The first allocation algorithm fragments
the reduce tasks proportionally to the jobs’ requirements in
regards to the appropriate number of reduce tasks (as com-
puted in Section 3.1) while the second algorithm applies a

205

Algorithm 2 Proportionally Fair Reduce Task Allocation

1: Input: rtasks[], number of jobs, RSlots
2: Output: rtasks[]
3: tasks sum← 0
4: for (i← 0 to number of jobs− 1) do
5: tasks sum← tasks sum + rtasks[i]
6: for (i← 0 to number of jobs− 1) do

7: rtasks[i]← rtasks[i]

tasks sum
×RSlots

8: return rtasks[]

fair policy so that each job will use approximately the same
number of reduce slots.

Proportionally Fair. With our first algorithm, we frag-
ment the jobs’ reduce tasks in a way that is fair, based on
the requirements of each Hadoop job. In our case, the jobs’
requirements are the number of reduce tasks calculated ini-
tially through the use of Algorithm 1. More formally we
adjust the reduce tasks as follows:

rtasks
′
j =

rtasksj∑
j
′∈Jobs rtasksj′

×RSlots,∀j ∈ Jobs (6)

The number of reduce tasks depends on the initially com-
puted number and is proportional to the available reduce
slots (i.e. RSlots metric).

Example. Let us assume we have three jobs that we
want to execute in parallel and the number of reduce tasks
calculated for them initially is, 5 for the first job, 3 for the
second and 4 for the third. That sums up to 12 reduce tasks
in total. Furthermore, assume that our cluster consists of
only 9 reduce slots. First we compute the portion of that
12 total reduce tasks that corresponds to each job. So for

instance, for the first job we would have
5

12
≈ 0.41. After

we have that portion for each job, we multiply it with the
number of reduce slots in the cluster (9 in our case). The
result of that computation rounded to the nearest integer,
is the number of reduce slots that each job is going to use
for its execution. Our proportionally-fair algorithm that we
described above, can be seen in its entirety in Algorithm 2.

Round-robin. Our second algorithm fragments the jobs’
reduce tasks into the available reduce slots in a Round-Robin
(RR) manner. More specifically, we initially line up our jobs
in the order they are going to be submitted for execution
in our cluster and start giving them one reduce slot each.
Once we traversed all the jobs (and still have some remaining
reduce slots), we start again from the beginning and give
each job one more reduce slot. We apply this procedure until
we run out of reduce slots in the cluster. By fragmenting the
reduce tasks via this approach, we make sure that all jobs
will reserve approximately the same number of reduce slots
(i.e. rtasksj = RSlots

|Jobs| , ∀j ∈ Jobs). Finally, our round-robin

algorithm can be seen materialized in Algorithm 3.

Job’s Name Job’s Description
LineStats Computes the mean reported delay as well

as the standard deviation, observed by
buses passing from the same lines with the
same direction and at the same hour of the
day.

PointStats Computes the mean reported delay and
standard deviation of buses that traverse
points of interest in Dublin city (i.e. these
points were detected by applying the DEN-
CLUE [17] clustering algorithm) at the
same hour of the day.

UniqueBuses Detects for each line the number of bus ve-
hicles that traverse it.

Table 2: Jobs’ Description

Algorithm 3 Round-robin Reduce Task Allocation

1: Input: rtasks[], number of jobs, RSlots
2: Output: rtasks[]
3: {Initialize all the elements of the rtasks[] array to zero}
4: threshold← RSlots
5: while (threshold > 0) do
6: for (i← 0 to number of jobs− 1) do
7: if (threshold > 0) then
8: rtasks[i]← rtasks[i] + 1
9: threshold← threshold− 1

10: else
11: break
12: return rtasks[]

4. EVALUATION
Settings. In order to assess the benefits of our proposal,

we performed a series of experiments on our local Hadoop
cluster which consists of 7 Virtual Machines (VMs). Each
VM is equipped with two CPU processors and 3, 096 MB
RAM. We used Hadoop 1.2.1 and each VM represents a node
in the Hadoop cluster, with one of them assuming the role of
the ”master” node. Moreover all VMs act as TaskTrackers,
which means that are responsible for executing map and re-
duce tasks. Each node is configured to run at most two map
and two reduce tasks in parallel. As a result we have a total
of 14 available map slots and more importantly 14 reduce
slots. Finally, the reduce tasks buffer size (i.e. rbs metric in
Section 3.1) is set at 200MB (i.e. the default value).

Job’s Description. For the evaluation of our approach
we examined three applications that are applied in the EU-
funded Insight project [18] for computing helpful traffic in-
formation from sensors placed on buses in the city of Dublin,
Ireland [19]. These statistics enable us to detect unexpected
traffic conditions in the city [20]. Applications were assigned
concurrently in the Hadoop cluster for execution (e.g. the
applications can be seen as a Hadoop workload [21]). You
can see the details about the three applications in Table
2. Our experiments were performed with the same input
dataset [19] varying its size in order to test the scalabil-
ity of our approach. So, first we used a ”small-sized” in-
put dataset of approximately 300 MB which contained the
bus traces of our original dataset that were recorded be-
tween 8:00 and 9:00 in the morning on all weekdays. Next
we used a ”medium-sized” input dataset of approximately

206

 0

 1

 2

 3

 4

 5

 6

 7

 8

LineStats PointStats UniqueBuses

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Jobs

Jobs’ Completion Times for 300 MB data

DR+Prop
DR+RR

Profiler-Jobs
Default

 0

 5

 10

 15

 20

 25

 30

 35

LineStats PointStats UniqueBuses

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Jobs

Jobs’ Completion Times for 800 MB data

DR+Prop
DR+RR

Profiler-Jobs
Default

 0

 10

 20

 30

 40

 50

 60

LineStats PointStats UniqueBuses

E
x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Jobs

Jobs’ Completion Times for 3.7 GB data

DR+Prop

DR+RR

Profiler-Jobs

Default

Figure 2: Per Job Execution Time Comparison of the Different Reduce Task Adjustment Methods

 0

 1

 2

 3

 4

 5

 6

 7

 8

DR+Prop DR+RR Profiler-Jobs DefaultW
o

rk
lo

a
d

’s
 E

x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Algorithms

Jobs’ Completion Times for 300 MB data

Actual Execution Time

Initialization Overhead

 0

 5

 10

 15

 20

 25

 30

DR+Prop DR+RR Profiler-Jobs DefaultW
o

rk
lo

a
d

’s
 E

x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Algorithms

Jobs’ Completion Times for 800 MB data

Actual Execution Time

Initialization Overhead

 0

 10

 20

 30

 40

 50

 60

DR+Prop DR+RR Profiler-Jobs DefaultW
o

rk
lo

a
d

’s
 E

x
e

c
u

ti
o

n
 T

im
e

 (
m

in
)

Algorithms

Jobs’ Completion Times for 3.7 GB data

Actual Execution Time

Initialization Overhead

Figure 3: End-to-End Execution Time Comparison of the Different Reduce Task Adjustment Methods

800 MB which contained all the bus traces of our original
dataset that were recorded on a weekend. Finally, we used
a ”large-sized” input dataset of approximately 3.7 GB which
contained all the bus traces of our original dataset.

Method’s Description. We applied our reduce task ad-
justment proposal, with (Profiler-Jobs in Figures 2 and 3)
and without (DR in Figures 2 and 3) profiler-jobs and com-
pared it with the default policy (Default in Figures 2 and
3) applied by Hadoop that uses only one reduce task per
job. Furthermore, we compared the two different alloca-
tion policies, Proportionally Fair (Prop in Figures 2 and 3)
and Round-Robin (RR in Figures 2 and 3), as our reduce
tasks were bound by the 14 available reduce slots. For the
profiler-jobs we utilized 10% of the input data for the cal-
culation and applied the proportionally-fair allocation for
fragmenting the reduce tasks. For each unique execution
combination, we performed three separate runs on our clus-
ter and we extracted the average completion time of each
job, as well as the total execution time (completion of all
3 jobs). The last metric depicts the execution time of the
whole workload and depends on the execution time of the
slowest running job.

Per Job Execution Time. In Figure 2, you can see the
observed execution time per job for the different adjustment
policies. As you can observe, our proposed schema is able to
decrease the execution times of most jobs compared to the
default approach. Furthermore, using profiler-jobs seems to
be beneficial only if the dataset is large. In case of small
datasets (as in the 300MB scenario) invoking this profiler-
job can deteriorate the job’s performance. As you can notice
especially for the larger input dataset using the proportion-
ally fair allocation can significantly enhance the performance
as it reduces the execution time of the long running job.

Workload’s Execution Time. In regards to the total
execution time of the examined workload, in Figure 3 we
illustrate the benefits of our proposal. Our algorithm that
uses past execution runs for computing the reduce tasks,
minimizes the required execution time adding small over-
head in the execution time compared to profiler-jobs that
may require even 2.5 minutes to complete. Furthermore, our
proportionally fair approach outperforms the round-robin
technique as it allocates more resources to LineStats and
PointStats which are the ones that require the most exe-
cution time. The round-robin policy would be beneficial in
cases where all the jobs in the workload have similar pro-
cessing requirements.

5. RELATED WORK
Zhuoyao Zhang et al. [8] proposed a performance evalua-

tion framework, called AutoTune, that automates the user’s
efforts of tuning the number of reduce tasks along a Hadoop
workflow, in order to optimize the workflow’s overall com-
pletion time and resource usage. Their approach focuses on
jobs that execute sequentially and each job’s output serves
as the input of the next. In contrast our work considers jobs
that execute in parallel. Authors in [9] examined the idea of
using a pre-job called Flubber in order to calculate the ideal
number of reduce tasks for a given Hadoop job. This ap-
proach is similar to our proposal which uses profiler-jobs for
the calculation of the appropriate number of reduce tasks.
The main difference with our approach is that Flubber pre-
jobs are more complicate as they try to depict the impact of
skewed data and thus require more processing time and add
significant overhead to the initialization of the actual job.

Matei Zaharia et al. [22] proposed a novel Hadoop sched-
uler for the execution of Hadoop jobs in the available re-

207

sources. Their research indicated that Hadoop’s default
scheduler can cause severe performance degradation in het-
erogeneous environments and for that reason they designed
a scheduling algorithm, called LATE, that is highly robust
to heterogeneity. In [14], authors focused on the even dis-
tribution of data between map and reduce tasks, especially
in the presence of skewed data. They propose and evalu-
ate two approaches for balancing the load between reduce
tasks. Both approaches utilize a pre-processing job to an-
alyze the data distribution. Furthermore, authors in [23]
provide a novel schema that enables the dynamic configu-
ration of map and reduce slots that aims to minimize the
makespan of a Hadoop workload.

Finally, there are many works that focus on estimating
the performance (i.e. in terms of execution time) of Hadoop
jobs. This way the users acquire useful historical data, which
can utilize on future runs, thus improving their jobs’ perfor-
mance. Kristi Morton et al. [24], proposed a progress indi-
cator system for MapReduce jobs, named Parallax. Authors
in [25] and [13] also proposed frameworks for predicting the
performance of Hadoop jobs. These works are orthogonal to
ours and can further improve Hadoop’s performance.

6. CONCLUSIONS
In this paper we studied the problem of automatically

tuning the number of reduce tasks for concurrently running
Hadoop jobs, trying to minimize their end-to-end execution
time. More specifically, we provided an algorithm for com-
puting the appropriate number of reduce tasks per job when
we have past execution runs. We also examined the appli-
cability of small profiler-jobs when no historical data are
available. Furthermore, we compared two well-known tech-
niques for fragmenting the reduce tasks to the available re-
duce slots. Finally, we evaluated the performance of our
proposals in our cluster using commonly used traffic moni-
toring applications, indicating the benefits of our approach.

7. ACKNOWLEDGMENTS
This research has been co-financed by the European Union

(European Social Fund ESF) and Greek national funds through
the Operational Program Education and Lifelong Learning
of the National Strategic Reference Framework (NSRF) -
Research Funding Program: Thalis-DISFER, Aristeia-MMD,
Aristeia-INCEPTION Investing in knowledge society through
the European

8. REFERENCES
[1] Facebook, http://www.facebook.com.

[2] Yahoo!, http://www.yahoo.com.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive
- A Warehousing Solution Over a Map-Reduce
Framework,” PVLDB, Pages 1626-1629, 2009.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified
data processing on large clusters,” Communications of
the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[5] Hadoop, http://hadoop.apache.org.

[6] Companies ”powered by” Hadoop,
https://wiki.apache.org/hadoop/PoweredBy.

[7] N. Zacheilas and V. Kalogeraki, “Real-Time
Scheduling of Skewed MapReduce Jobs in

Heterogeneous Environments,” in ICAC, Philadelphia,
PA, Jun. 2014, pp. 189–200.

[8] Z. Zhang, L. Cherkasova, and B. T. Loo, “AutoTune:
Optimizing Execution Concurrency and Resource
Usage in Mapreduce Workflows.” in ICAC, 2013, pp.
175–181.

[9] R. Paravastu, R. Scarlat, and B. Chandrasekaran,
“Adaptive Load Balancing in Mapreduce using
Flubber,” Duke University Project Report, 2012.

[10] H. Herodotou and S. Babu, “Profiling, What-if
Analysis, and Costbased Optimization of MapReduce
Programs,” PVLDB 4(11): 1111-1122, 2011.

[11] J. Shi, J. Zou, J. Lu, Z. Cao, S. Li, and C. Wang,
“MRTuner: A Toolkit to Enable Holistic Optimization
for MapReduce Jobs,” PVLDB 7(13): 1319-1330,
2014.

[12] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi,
“Fresh: Fair and efficient slot configuration and
scheduling for hadoop clusters,” in CLOUD, 2014, pp.
761–768.

[13] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria:
automatic resource inference and allocation for
mapreduce environments,” in ICAC, Karlsruhe,
Germany, 2011, pp. 235–244.

[14] L. Kolb, A. Thor, and E. Rahm, “Load balancing for
mapreduce-based entity resolution,” in ICDE, 2012,
pp. 618–629.

[15] M. Isard, V. Prabhakaran, J. Currey, U. Wieder,
K. Talwar, and A. Goldberg, “Quincy: fair scheduling
for distributed computing clusters,” in SIGOPS, 2009,
pp. 261–276.

[16] T. Sandholm and K. Lai, “Mapreduce optimization
using regulated dynamic prioritization,”
SIGMETRICS, vol. 37, no. 1, pp. 299–310, 2009.

[17] A. Hinneburg and D. A. Keim, “An Efficient Approach
to Clustering in Large Multimedia Databases with
Noise,” in KDD, vol. 98, 1998, pp. 58–65.

[18] Insight Project, http://www.insight-ict.eu/.

[19] Dublin Bus Data, http:
//dublinked.com/datastore/datasets/dataset-304.php.

[20] N. Zygouras, N. Zacheilas, V. Kalogeraki, D. Kinane,
and D. Gunopulos, “Insights on a Scalable and
Dynamic Traffic Management System,” EDBT, pp.
653–664, 2015.

[21] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz,
“The case for evaluating mapreduce performance using
workload suites,” in MASCOTS, 2011, pp. 390–399.

[22] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz,
and I. Stoica, “Improving MapReduce Performance in
Heterogeneous Environments.” in OSDI, vol. 8, no. 4,
2008, p. 7.

[23] Y. Yao, J. Wang, B. Sheng, and N. Mi, “Using a
Tunable Knob for Reducing Makespan of MapReduce
Jobs in a Hadoop Cluster,” in CLOUD. IEEE, 2013,
pp. 1–8.

[24] K. Morton, A. Friesen, M. Balazinska, and
D. Grossman, “Estimating the progress of mapreduce
pipelines,” in ICDE, 2010, pp. 681–684.

[25] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and
X. Lin, “A Hadoop Mapreduce Performance Prediction
Method,” in HPCC EUC, 2013, pp. 820–825.

208

