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Abstract—In recent years we have observed a significant
increase in the popularity of location-based social networks for
exchanging news and experiences, sharing location information,
or publishing real world events. One important challenge in
such networks is to understand human crowd mobility behavior
based on user social activities and interactions. In this paper
we introduce PRESENT, our middleware that utilizes a Mixed
Markov Model to extract the behavioral patterns of the users in
social groups, to make personalized event recommendations. Our
detailed experimental evaluation, using data from the Meetup
location-based social network, illustrates that our approach is
efficient, practical and achieves an average prediction for the
user attendance of over 73%.

I. INTRODUCTION

Recently, the prevalence of social networks along with the
widespread adoption of smartphones with ubiquitous sensing
capabilities, are driving the development of applications and
services that are revolutionizing the way that we interact
among each other. Newly emerged location-based social net-
works such as Foursquare [1], Meetup [2] and Twitter [3],
have evolved into attractive platforms for exchanging news
and experiences, sharing location information or publishing
group activities, i.e., from informal gatherings (e.g., movie
nights) to formal activities (e.g., business meetings). Recent
studies reveal that an increasing number of people desire to
share their geographic location information with their social
circles by responding whether they will attend social events
(RSVP) or “checking in” at various locations. Such location-
based social networks can have significant impact on future
businesses as they give the opportunity to companies and
organizations to gain insight into human crowd behavior, reach
wider communities and improve customer service.

However, this tremendous increase in popularity and size
of location-based social networks has led to an information
overload. Selecting the most interesting events and deciding
whether to attend becomes increasingly challenging, as users
have to search over a large number of events published by their
social circles to find the ones which are most interesting to
them. This procedure is becoming extremely difficult as users
become socially connected with several groups. To compensate
for the lack of assessment for these events, the user’s social
network can be used as an additional knowledge source. For
example, human crowd behavior is largely influenced by social
relationships, as people are more likely to visit places or
attend events that people they know of, attend. This is true for
business events (i.e., international conferences, workshops), as
well as cultural events (i.e., going to movies, concerts). Thus,
recommendations of events considering the preferences of

members of the social groups are more suitable than traditional
recommendations based on the preferences of the individual
user. Moreover, social group attendance to events can be very
dynamic and depend on several factors such as the group
members’ availability, time and location of the event, personal
interests, etc.

In this paper we develop an approach that exploits user
behavior in social groups to make personalized event recom-
mendations. More specifically, the questions we aim to answer
are: (1) Can we identify the features that shape human crowd
behavior at social events? (2) Given that a user belongs to
multiple social groups, can we recommend the next event for
a user to attend, based on the features and degree of closeness
between members of the social groups? Our goal is to make
event attend recommendations that are both effective and
personalized. The problem of recommending the next event to
a user is challenging due to: (i) the numerous following events
that may exist as candidates for each user, (ii) random factors
not known to the system may prevent the user to attend some
events (e.g., user might be unavailable), (iii) human factor is
unpredictable and thus users may decide to attend an event
based on several parameters, (iv) users do not respond to all
RSVPs, so the attendance lists are incomplete.

Existing event recommendation techniques that utilize met-
rics including user interests and location preferences [4],
popularity and geographical proximity to the event [5], or
friendship-based recommendations [6] are inadequate as they
fail to capture the behavior developed among users within a
social group. Other approaches [7], [8], [9], aim to predict
whether a user will attend a forthcoming event or determine
his next check-in by focusing on the individual user features,
such as past events, categorical preferences, friends attendance,
etc. Such approaches face a cold-start problem, especially
for short-term events considered in [9], and as we also
show in the experimental evaluation, considering user social
behavior outperforms recommendation based on individual
user features. Other recommendation systems aim to define
events (or friends) that the user might be interested to attend
(or connect with), but they focus on maximizing the recall
of the recommended events rather than the precision [10].
Collaborative approaches that consider previous user behavior
[11], [12] as well as combining these approaches with content-
based algorithms [13], have also been proposed. However, they
focus on evaluating and suggesting each individual event for
a user, rather than defining the user’s following event atten-
dance. Finally, we state that traditional event recommendation
techniques are not adequate for our problem since they do
not capture the dynamics developed among social groups, and



Id Cat. Description Id Cat. Description
1 Arts & Culture 12 LGBT
2 Career & Business 13 Movements & Politics
3 Cars & Motorcycle 14 Health & Wellbeing
4 Community & Environment 15 Hobbies & Crafts
5 Dancing 16 Language & Ethnic Identity
6 Education & Learning 17 Lifestyle
8 Fashion & Beauty 18 Literature & Writing
9 Fitness 20 Movies & Film
10 Food & Drink 21 Music
11 Games 22 New & Age & Spirituality

TABLE I. MEETUP CATEGORIES

they do not consider any sequence in the list of events (e.g.,
events that overlap temporally will be recommended). These
are fundamental differences in our approach.

We summarize our contributions below:

• We introduce PRESENT (PRediction of Event atten-
dance in Social ENvironmenTs), our middleware that
aims to exploit event attendance behavior developed
within social groups for personalized event recommen-
dations.

• We study several measures of social behavior to
quantify the similarity of the user behavior with other
members of the social groups. We assume that users
develop groups that behave similarly, in terms of a
predefined feature, when attending events. PRESENT
exploits information from multiple social networks,
and utilizes a Mixed Markov Model to extract the
behavioral patterns of the groups to determine the next
event for a user to attend.

• We have implemented PRESENT and developed a
smartphone application that alerts the user for the next
event to attend. Our detailed experimental evaluation,
using a real location-based social network dataset
from Meetup, illustrates that PRESENT is practical,
efficient and can predict the next event for a user with
high accuracy.

To the best of our knowledge, our work presents the first
approach to understand the features that define human crowd
behavior at social events, from empirical analysis to prediction
models.

II. SYSTEM MODEL

Location-based Social Networks (LBSN). Location-based
social networks refer to social networks that incorporate the
dimension of geographic location, where users can share
location-embedded information or content. Introducing loca-
tion capabilities, such as geotagging, can reveal interdependen-
cies among users, derived from their locations in the physical
world. Such interdependencies can provide knowledge about
users with common interests, behavior, etc. Users develop
social ties with other members within the groups; these can
have significant impact on the structure of the social groups as
well as the event attendances within the group. This knowledge
can be extracted from social networks, such as Meetup [2],
whose purpose is to organize events at different physical
locations. For example, Meetup (one of the most popular
location-based social networks) enables its members to join
Meetup groups, denoted as M-groups, where they announce
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Fig. 1. Meetup Statistics.

events to their members. Meetup users can also announce
their willingness to attend an event for the M-groups that
they belong to. M-groups span several categories, as shown
in table I. In this work we study the Meetup social network
with 205684 users and 89952 events, announced from 2578
M-groups. Figure 1 shows the distribution of groups, events
and attends for each Meetup category (more details about our
study are provided in the experimental evaluation section).

Social Events. We denote as an event e ∈ E, a pre-
organized gathering of people during a particular time interval
at a spatial location. Thus, an event can be a football match,
a music festival, a session in a conference, etc. Each event e
has the form: < ide, latitudee, longitudee, timestampe >
where ide is the unique identifier of the event, latitudee
and longitudee reflect the geographical coordinates where the
event takes place, and timestampe denotes the starting time
of the event. Although in this work we are not interested in the
duration of the event, such information can be easily extracted
from the Meetup social network.

Users. Each user n ∈ U can be a member of one or more
social networks, and thus, the user can participate in multiple
events organized across different social groups. Whenever a
user n attends or is willing to attend a social event e, we
denote it using a tuple < ide, idn > that encapsulates the
identifiers of the user and the event. The user attendance to
an event can be defined either (i) formally, when the user
responds to a formal event invitation (RSVP) and informs the
social network about the attendance at event ide (i.e., Meetup),
or (ii) informally, when the user informs the social network
about his/her spatiotemporal presence (i.e., using “check-ins”
in the case of Foursquare), so that the links among the user’s
presence and corresponding event can be instantiated [14].
The participation information provides both historical data,
from the announced user attendances for completed events, as
well as attendances to future events based on user feedback.
Thus, such feedback can be the reply to an RSVP for event-
based networks, registration forms for formal events, etc. For
instance, users tend to register early in conferences or buy
tickets online to get lower rates.

III. PROBLEM DEFINITION

Our goal is to better understand the factors that influence
human crowd behavior, and in particular, we focus on user
behavior in terms of the social groups they attend. We study
several features and degree of closeness between members of
a social group. Then, we use machine learning techniques, and
more specifically prediction techniques, where a set of sample
values is first observed and then a statistical model is trained
to efficiently predict the next event attendance for a user, when



similar preferences are observed. This way, we can better un-
derstand user interests, make efficient recommendations about
upcoming events as well as identify popular social groups [15].
We give a formal definition of our problem below:

Definition. Let E = e1, e2, ..., et be the complete set of
historic events attended by a set of users U , obtained from the
users’ social profiles. Assuming that users in U are organized
into j groups Gj , where each group contains users with similar
behavior based on a predefined feature. We consider a set
of users T ⊂ U , denoted as the training set, who are used
to extract the transition probabilities for their group and for
whom their willingness to attend future events is known, based
on their RSVP responses. Let a set of users R ⊂ U , with
R ∩ T = ∅ and R ∪ T = U , denoted as the evaluated set and
a timestamp t. Our problem is to rank all the possible next
events based on the transition probabilities, to determine the
next event e ∈ E for each user n ∈ R to attend after t.

IV. PRESENT MIDDLEWARE

PRESENT uses a graphical model which is a natural way
to capture dependencies between variables; these will be used
to summarize past-observed events and to predict next event
attendance. We exploit the Mixed Markov Model (MMM)
[16], which is more efficient compared to the simple Markov
Model (MM) and the Hidden Markov Model (HMM) for a
number of reasons: MM assumes that all users choose next
events to attend on the basis of their current events only.
However, this assumption does not consider user personal
preferences or social influences. On the other hand, HMM
takes into account the user profiles and assumes that users
move to different events based on their personal thoughts only.
This is inappropriate for our setting as there are various other
factors, such as geographical distance or time of the event,
that affect the user choices. MMM is an improvement of MM
since it takes into account the personalities of the individual
users within a group. This characteristic enables MMM to
outperform the simple MM and HMM models. MMM studies
common attitudes among users in a group. Hence, we can
exploit this model as we aim to investigate whether we can
predict the user’s next attend based on the behavior of the
groups he belongs. Finally, non-Markov based approaches like
sequence mining and motif mining [17] are not suitable for our
setting since each social event is unique and independent, and
thus, there are no patterns developed in the sequence that users
visit the events.

The architecture of our approach is presented in figure 2.
The PRESENT middleware comprises components that run
on cloud servers as well as mobile devices to efficiently
and accurately provide personalized event recommendations.
PRESENT has a Construction Phase that resides on a cloud
server and consists of the following components: (i) Data
Collector, (ii) Model Generator, (iii) User Profiles and (iv)
Prediction Component. Additionally a Suggestion Phase is
executed on the user’s mobile devices through the Next Event
Suggestion Component. The components are presented in
detail in the following sections.

A. Construction Phase

First we describe the construction phase, which is executed
on the cloud to instantiate the needed structures for the

Fig. 2. PRESENT Middleware.

prediction. The construction phase is triggered whenever new
data become available from the Data Collector component, to
update the structures.

1) Data Collector Component: The Data Collector compo-
nent is executed periodically to extract new rich content from
one or more social networks. Thus, it is executed by calling
the crawl(crawltime, network, parameters[])
function. The crawl function aims to retrieve all the data pro-
duced after time crawltime, for the selected network (e.g.,
Meetup, Foursquare). The parameters[] variable refers to
a list of parameters for the requests, such as the type of the
data to be retrieved (e.g., events, RSVPs). For instance, we can
crawl all Meetup events, produced after timepoint prevtime,
by calling crawl(prevtime, Meetup, events).

The crawl function is responsible to connect with different
social networks, such as Twitter, Foursquare, Meetup, etc., and
extract the requested data through their APIs. Each network
may support a different protocol for the data retrieval, such
as REST or SOAP, as well as different data formats (e.g.,
JSON, XML, KML, etc.). However, all the social networks
that we currently support (Meetup and Foursquare), use the
REST API. Thus, they receive a GET message and reply with a
JSON object that encapsulates the data. Thus, for an M-group,
named “group” the respective call in our previous example
would be: https : //api.meetup.com/2/events/?status =
past&order = time&group urlname = group&format =
json&fields = &time = prevtime&key = 123”. Upon
retrieving the JSON object we remove any redundant in-
formation and insert the data in a database. We note that
the PRESENT middleware can operate with multiple social
networks simultaneously.

2) User Profiles Component: The User Profiles component
is responsible to maintain user attendances to events. These
can be either retrieved from the Data Collector component
or from the user’s mobile application. When the mobile
application sends user attendance information to PRESENT,
the post(user, event, networks[]) function is trig-
gered. This function sends multiple POST requests with
JSON formatted objects, for each individual social network
(networks[]) that the user has connected with. Although
each network has different characteristics, PRESENT can
post these data asynchronously and transparently to multiple
networks. For instance, an event attendance will be represented
as a “check-in” in Foursquare and as an RSVP to Meetup.

3) Feature-Based Groups: In order to instantiate our struc-
tures for the event recommendation, we divide the users into



e ∈ E Social Events
n ∈ U Users in our system
Gj Groups of users with a similar feature
r Label for an event (r=1,2,3,...)
m Amount of states (events)
i ith state of each user
wn,i nth user’s position in each state
wn,i,rwn,i+1,s i + 1 transition of the nth user to event s from event r
prs Transition probability from event r to event s
p(k)rs Transition probability from event r to event s for group k
z Latent vector for each transition
zn Latent vector describing the nth user’s group
πk Mixing coefficient such that πk = p(zn,k = 1)

TABLE II. SYMBOLS AND NOTATIONS

feature-based groups Gj , where their members develop similar
behaviors for the selected feature. Our goal is to look for
quantities that capture some degree of closeness between
members of the groups. Social networks depict different types
of features that can be used to organize users into groups based
on their behavior such as historical visits, temporal features,
categorical preferences and social distance of the visited places
[10], [8], [18]. In this work we exploit the most popular
features in the literature, namely the spatial and attendance
features. This is certainly not an exhaustive set of features,
but our study shows that these can greatly affect the attendance
of events. Although different features can be plugged into our
system, comparing different features is out of the scope of this
paper. In our work we consider the following features:

1) Attendance Criterion, where we produce groups
whose members have similar amount of attends.
Assuming a list L with users sorted based on the
amount of their attendances, we define the groups as
Gj = {n| ∀n s.t. ⌊Ln/g⌋ == j}, where Ln denotes
the sequential position of user n in L and g denotes
the maximum group size.

2) Spatial Criterion, where we divide the users based
on the geographic location of their attendance. Hence,
users who visit spatially close places will be assigned
to the same group Gj . For each user n, we define
a location locn, which is the geographical center of
the places he has visited. We define the groups Gj

by scanning the spatial area, and for each user we
discover, we select g users with the smallest distance
to locn and add them to group Gj .

4) Model Generator Component: The Model Generator
Component exploits the data from the Data Collector and User
Profiles components, to generate the model we use for the
prediction. We employ a graphical representation, as shown in
figure 3, to illustrate the mobility of the users of a group. Each
chain represents a feature-based group Gj , whose users move
among the events (nodes) with some probability that we need
to estimate. Such a representation enables us to understand
the behavior of the feature based groups Gj . It also enables
us to evaluate users under different levels of granularity (e.g.,
evaluate only high-attendance groups). For instance, we can
extract major group events by determining the events attended
by a group of users who participate in only a few events.

Events. We use the events attended by the users in
groups Gj , extracted through their social profiles, to learn
the model. Thus, the set of events to evaluate is denoted as
{e|∃ < ide, idn >,n ∈ Gj∀Gj}. We only consider the events

Fig. 3. Transition Probabilities for the Groups.

that have been attended by at least one user in the evaluated
groups Gj and so we only need to define whether a user will
attend these events. This reduces the computation overhead,
compared to the alternative naive approach of linking each
user to any produced event. We note that events can overlap
for the evaluated groups and that repetitive events are handled
as individual events.

Suppose we have a set of observations for each user n that
reflects the past events that the user has attended, although the
user might have also attended additional events that we are
not aware of. We assume that a user moves among the events
in the group that we evaluate and we will study each of the
groups that he belongs to (in case that the user belongs to more
than one group) separately. Also, we assume that at any point
in time each user can only move to a future event.

States and Transitions. Initially, we enumerate the events
organized by each group with natural numbers l ∈ N (l={ 0,
1, 2, . . . }) according to the chronological order of the events.
Essentially, these represent the complete set of states in our
model. A discrete transition of each user is indicated by a
series of natural numbers l ∈ N depending on which events the
user attends. Assume that at the beginning the user is at “zero”
event. We use an m-dimensional vector wn,i, for each user n,
that depends on the amount of events each group has organized
in the period we study. Each state i represents the unique event
that a specific user attends and m shows all the events e that
have been organized by the group in time-series. The vector
wn,i = wn,i,1, ..., wn,i,m represents the position of the nth

user in each state i, namely the event that the user attends at a
particular time instance. There are as many vectors wn,i as the
number of events that the specific user has attended. If a group
Gj has organized 3 events, then wn,i = wn,i,1, wn,i,2, wn,i,3,
where wn,i,1 is the first event that the nth user has the chance
to attend and wn,i,3 is the last event he can attend. For instance,
if the second event that the user n has visited is the 3rd event
of the group then wn,2,3 = 1 and wn,2,l = 0, ∀l ∈ {1, 2}.

Transition Probabilities. In order to predict whether a user
n ∈ U attends an upcoming event, we should compute the
probabilities of the user’s transitions among the events. We
assume that all events are independent since social networks
do not capture the similarity or dependancy among events,
although such information could further improve our model.
We denote the transition probability from event r ∈ E to
event s ∈ E as prs, where

∑
s prs = 1, thus the sum of

the transition probabilities from event r to every other event
equals to one. The probability prs is related to the transition



probabilities among the various events that are organized in
a group and so it differs for each different group. We say
that wn,i,rwn,i+1,s = 1 when the nth user makes the i + 1
transition to event s on condition that his previous event was
r, otherwise wn,i,rwn,i+1,s = 0. As a result prs represents the
probability P (wn,i,rwn,i+1,s = 1). We state that we do not
consider those wn,i which are equal to zero; we only consider
the events that the user n has attended. Therefore the overall
transition probability is given as:

P ({wn,i,0, ..., wn,i,m}) =
∏
irs

p
wn,i,rwn,i+1,s
rs (1)

Group-based Transition Probabilities. Assuming k groups
of users, we present our model for the different groups in
figure 3. Note that for simplicity we illustrate only some of
the transitions. The states of each chain represent the m events
which are depicted in time series. As the figure shows, the
events that each group organizes constitute a chain, with the
same amount of states, denoted as m, although users in some
groups do not attend some of the events in their chain. Suppose
that a user of the kth group is attending the y-th event now,
then the possible transitions will be to y + 1, y + 2, ..., i and
the corresponding probabilities will be p(k)y(y+1), p(k)y(y+2),
... ,p(k)y(i). These probabilities are depicted in the figure
as p(k)rs where k represents the group and rs shows the
transition from event r to event s.

5) Prediction Component: The goal of the Prediction Com-
ponent, for a given group and feature, is to estimate the tran-
sition probabilities among the events for each group. Assume
that the social network consists of k groups, as discussed in
Section IV-A3. We exploit the MMM model for the individual
groups since each group consists of different users (based
on the features) and with different behavior. We make the
assumption that users of the same groups would have a similar
behavior. MMM has an unobservable parameter, which is the
fixed group of the user. Specifically, the user’s group defines
the model that created the transition, namely if a user belongs
to the kth group, then we say that the kth model caused the
transition. The probability distribution sets a latent vector z for
each transition. The latent vector zn describes the nth user’s
group and zn,k = 1 when the kth model caused the transition
of nth user, otherwise zn,k = 0.

Computation of Probabilities. First, we define the prob-
ability of user n to attend a specific event:

P (wn,i) =
∑
z

P (wn,i, zn) (2)

where P (wn,i) represents the probability of user n being at a
specific event, in state i. Also from the product rule we extract
the joint probability of zn and wn,i as:

P (zn, wn,i) = P (wn,i|zn)P (zn) (3)

The joint probability P (zn, wn,i), shows the probability of
the nth user being at a particular event and belonging to a
particular group and due to symmetric rules: P (zn, wn,i) =
P (wn,i, zn). Thus, using equations 2 and 3 we take that:

P (wn,i) =
∑
z

P (wn,i|zn)P (zn) (4)

From equation 4 we infer that we should find the probabilities
P (zn) and P (wn,i|zn) to compute P (wn,i). The marginal

distribution over zn (P (zn)) is specified in terms of the mixing
coefficient πk, such that P (zn,k = 1) = πk where the
parameters {πk} must satisfy 0 ≤ πk ≤ 1 together with∑K

k=1 πk = 1 because the values of πk are probabilities. Thus,
the marginal distribution of zn is defined as:

P (zn) =

K∏
k=1

π
zn,k

k (5)

where P (zn) shows the probability the nth user to belong to
a specific group.

Similarly, we compute the probability P (wn,i|zn), that rep-
resents the probability of user n being at a specific event given
that he belongs to a particular group. We define the transition
probability p(k)rs from event r to s under the k group, where∑

s p(k)rs = 1. Thus, the conditional distribution of wn,i

given a particular value for zn is:

P (wn,i|zn) =
K∏

k=1

(p(k)
wn,i−1,rwn,i,s
rs )zn,k (6)

The joint distribution P (zn, wn,i) is given by
P (wn,i|zn)P (zn) and the marginal distribution of wn,i

is then obtained by summing the joint distribution over all
possible states of zn:

P (wn,i) =
∑
z

P (wn,i|zn)P (zn) =

K∑
k=1

πkp(k)
wn,i−1,rwn,i,s
rs (7)

In equation 7, πk represents the prior probability of picking
the kth component and the probability p(k)

wn,i−1,rwn,i,s
rs rep-

resents the probability of wn,i conditioned on zn,k = 1 as can
be observed in equation 6.

We also need to define the posterior probabilities P (zn,k =
1|wn,i), which represent the probability the nth user belonging
to group k on condition that he is at a specific event. These
probabilities, also known as responsibilities, are computed by
the Bayes theorem:

γk(wn,i) = P (k|wn,i) =
πk

∏
i,rs p(k)

wn,i−1,rwn,i,s
rs∑

k′
∏

i,rs p(k
′)

wn,i−1,rwn,i,s
rs

(8)

where k = zn,k = 1 since, as we referred above, zn,k = 1
when the kth model causes the transition of user n.

Following that, we should estimate parameters πk, p(k)rs.
One common criterion for determining the parameters in a
probability distribution using an observed dataset is to find
the parameter values that maximize the likelihood function. In
our model the likelihood function is the probability P (wn,i).
In practice, it is more convenient to maximize the log of the
likelihood function, since the logarithm is a monotonically
increasing function, and so maximizing the log of a function
is equivalent to maximizing the function itself. Consequently,
logarithmic likelihood L is given as:

L =

N∑
n=1

log

K∑
k=1

πk

∏
i,rs

p(k)
wn,i−1,rwn,i,s
rs (9)

As we referred above, parameters πk and p(k)rs will satisfy
the following constrains:

∑
k πk = 1 and

∑
s p(k)rs = 1.



Maximizing L using Lagrange multipliers. In order
to find the maximum of the function L, subject to equality
constraints, we exploit the method of Lagrange multipliers[19]
which is used to solve maximization problems. We introduce
two new variables λ and µ called Lagrange multipliers and
study the Lagrange function defined as:

Λ =

N∑
n=1

log

K∑
k=1

πk

∏
i,rs

p(k)
xn,i−1,rxn,i,s
rs +

λ
(∑

k

πk − 1
)
+ µ

(∑
s

p(k)rs − 1
)

(10)

and we solve the following:

∇πk,p(k)rs,λ,µΛ(πk, p(k)rs, λ, µ) = 0 (11)

Setting the derivative of Λ with respect to πk to zero and
using the constraint

∑
k πk=1, we eliminate λ and obtain:

πk =
1

N

N∑
n=1

πk

∏
i,rs p(k)

wn,i−1,rwn,i,s
rs∑

k′
∏

i,rs p(k
′)

wn,i−1,rwn,i,s
rs

=
1

N

N∑
n=1

γk(wn,i)

(12)

So the mixing coefficient πk for the kth group is given by
the average responsibility that the group takes for explaining
the user’s attendances in organized events.

Setting the derivative of Λ with respect to p(k)rs to zero
and taking into account that

∑
s p(k)rs = 1, we eliminate the

parameter µ and obtain the transition probability p(k)rs:

p(k)rs =

∑N
n=1 wn,i−1,rwn,i,sγk(wn,i)∑
n,s wn,i−1,rwn,i,sγk(wn,i)

(13)

Setting Variables using EM. Apart from the parameters, we
should estimate the latent variable of MMM simultaneously.
This is achieved by using the Expectation-Maximization(EM)
algorithm which is an iterative method for finding maximum
likelihood estimates of parameters in statistical models, where
the model depends on unobserved latent variables. Thus, EM is
used for determining the variables and computing the transition
probabilities within the groups.

The algorithm involves two steps. The E-step is useful for
calculating the expectation values of z (γk(wn,i)) using the
observations and the current estimates of the values for the
parameters. The M-step updates the parameters by maximizing
the expectation found on the E-step. Thus, we first compute the
latent variable γk(wn,i) in the E-step using equation 8. In the
M-step, we update the parameters πk, p(k)rs, using equations
12,13. Then, we check for convergence of either the parameters
or the log likelihood logP (X|π, p(k)rs). If the convergence
criterion is not satisfied, we return to the E-step and continue
with the iterations. The log-likelihood is computed as follows:

logP (X|π, p(k)rs) =
N∑

n=1

log

K∑
k=1

πk

∏
i,rs

p(k)
wn,i−1,rwn,i,s
rs (14)

which is similar to equation 9 but each time we update the
new values of πk and p(k)rs. Our algorithm is summarized in
Algorithm 1.

Finally, whenever the system is updated by inserting ad-
ditional events (states) or user attends, the algorithm can be
triggered again with initial values the previously computed πk,
p(k)rs, to re-estimate the parameters.

Algorithm 1 Prediction of Next Event Attencdance
Input: group k, state i
Initialize the parameters πk and p(k)rs randomly
repeat

(E-Step) Compute the responsibilities γk(wn,i)
(M-Step) Re-estimate the parameters πk, p(k)rs

until (logP (X|π, p(k)rs) OR p(k)rs converges)

B. Suggestion Phase

The suggestion phase is triggered either on demand by the
user, or periodically to update the Next Event Suggestion at
the user device, as described below. Additionally, a user can
provide feedback whether he plans to visit the suggested event,
which is forwarded to our middleware using the insert()
function, as a JSON formatted object. This information is
then pushed asynchronously (using the post() function) by
PRESENT to the social networks that the user belongs to,
through their APIs (section IV-A2).

1) Next Event Suggestion Component: Each user that aims
to exploit our middleware should install the PRESENT Mobile
Application to receive personalized event suggestions. The
goal of the application is to predict and suggest the next event
for a user to attend through a simple widget (figure 2).

When the user initiates the application for the first time
he needs to select and connect with all the social networks
that he belongs to, through the graphical interface. Whenever
the application needs to provide such information to the user,
it executes the function: retrieve (group, feature,
time). Hence, it requests the subset of the chain for the
group that the user belongs to and for a specific feature
(selected by the user), that includes all events after time. This
request is performed by sending a JSON request object from
the device to a well known address, binded by the Prediction
Component of the respective PRESENT server. For instance, a
user that belongs to the second group in figure 3, can execute
the retrieve function, to retrieve the subset of the chain of his
group, depending on the selected feature and time, which is
illustrated with the blue cloud. The information requested is
returned to the mobile device through a JSON object. That
way, we do not publish private user information about the
attends since we do not share explicit attendance information.

Afterwards, the Next Event Suggestion Component is trig-
gered on the mobile device to predict the following event for
a user to attend based on the probabilities p(k)rs, for each
transition r,s under the evaluated group k. The result of the
prediction is defined as the transition r → s, ∀s with the
highest probability p(k)rs where r is the last event that user
n has visited. Thus, event s will appear at the user’s device.

Finally, the user can provide feedback to the PRESENT
system, whether he/she plans to attend the predicted event. The
feedback is provided using the insert(user, event)
function that encapsulates it to a JSON object. The JSON
object is sent to the User Profiles Component to update the
user’s set of attended events, and trigger the post function
to push this information to the social networks. The social
networks we are interested in, support the HTTP protocol to
push the data and thus, we need to produce POST requests
using JSON structured data, to insert data to these networks.



Fig. 4. HeatMap of the Meetup events in USA.
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C. Discussion

In this paper we focus on understanding the features that
shape human crowd behavior at social events, to quantify the
similarity of the user behavior with other members of the
social groups, and to make personalized recommendations.
Focusing on the scalability aspect would be important if a lot
of responses were generated in real-time for the events, and
we would need to update the parameters constantly. During
our experiments, with a real dataset that contains social data of
more than a year, we did not face such problems. However, we
could employ different engines for each geographical region or
evaluate users under different levels of granularity (e.g., only
high-attendance groups), to handle such issues.

V. EXPERIMENTAL EVALUATION

A. Empirical Study

In this study, we consider a real-world dataset obtained
from the popular Meetup social network. The dataset contains
the history of all events that took place from 13 March 2010
until 31 July 2011. It includes 205684 users, which belong to
2578 active M-groups. Each user can be registered in many
different M-groups. Each M-group corresponds to a topical
category depending on the themes, from the categories in table
I. In figure 4 we provide the distribution of the events in USA
to better visualize social event activity across the cities. We
focus on the USA since the vast majority of the events (77119
out of 89952) took place there. Note that locations with more
than 1000 events, are assigned with the same color, to better
illustrate the distribution of the locations.

As we show in the following sections, our analysis offers
empirical evidence that the features selected for dividing the
users into groups are correlated with specific user behaviors.

Understanding Human Crowd Behavior First, we per-
form a study on the Meetup social network to understand
the behavior of the human crowd. This study enables us

to determine the factors that differentiate user attendance
behavior at events and explain the reasons that lead us to divide
users into feature-based groups.

Location. In figure 5 we present the frequency of the top-
K locations per user. We only present up to top-30 since the
frequency of the following top-k locations is too small (less
than 0.5%). As can be observed, many attends for each user
are associated with a few places. For instance 12.5% attends
in Meetup are located in one place, which means that users
visit only a few places frequently but they visit many locations
overall, as can be inferred by the slope at the tail of the figure.

Figure 6 presents the Cumulative Distribution Function
(CDF) of the distance among the “neighborhood area of the
users” and the locations they visit. The neighborhood area of
each user represents the centroid of the locations he/she has
visited. As can be observed Meetup users typically visit events
close by since 60% of the users visit events within 10km and
95% of the users visit events within 100km.

Attendance. Figure 7 shows the amount of users and the
corresponding number of attended events. As can be observed,
the vast majority has attended fewer than 50 events. However,
one user has attended more than 200 events. Thus, such a
different behavior provides the insight that we need to evaluate
such users in separate groups. Such a division also allow us
to evaluate outliers separately.

B. Evaluation of PRESENT

In this section we study the performance of our prediction
approach in the PRESENT system. The experimental eval-
uation focuses on the following parameters: (i) Prediction
Accuracy, (ii) Total States, (iii) Total Users,(iv) Execution
times and (v) Accuracy levels per Category. We compare
PRESENT with two state-of-the-art techniques: (i) a technique
that considers only individual features for the groups, proposed
in [8], and we chose to compare it with the “Historical Venues”



feature that was shown to perform better than any of the
individual features, (ii) the collaborative filtering approach [11]
which is a common approach for recommendation systems.

In our prediction approach we evaluate all transitions from
an event that a user has attended to the next event that
he attended. We accept as a correct prediction if the user
sequence of event attendance is the one that we have predicted
(i.e., the transition from state a to state b with the highest
probability among all transitions (a, x)∀x), and as a false
prediction otherwise. We do not consider users with fewer
than two transitions and in order to qualify a group for the
prediction, the group needs to have at least three users. Finally,
we consider 66% of the users as the training set and the rest
of the users constitute the evaluation group.

We evaluate the prediction accuracy by considering that
users follow peers with similar behaviors within the group
based on the attendance and location features. We divide the
users into equal subsets based on their attendance to the events
and based on the centroid of the location of the events attended.
Producing groups based on user attendance is achieved through
sorting. However, to extract groups based on the location we
scan the spatial area and for each user we discover his k-
Nearest-Neighbors [20]. We define these k users as a group
Gj , remove them from the user set and continue scanning the
area. The presented results are averages over 3 runs.

PRESENT Efficiency. In figure 8 we present the average
prediction for the individual users for the top 500 M-groups,
based on their attendance. The selection of 500 was based on
the amount of users per group, to have enough users (i.e., at
least 135 users) for the prediction and the evaluation. The top
500 M-groups attendance ranges from 135 to 2100 users. We
present three division strategies: (i) we divide the users into
groups based on the amount of user attendances within the
evaluated M-group (Attendance Criterion), (ii) we divide the
users within a group based on their total attendances in the
dataset (Attendance Criterion), and (iii) we divide the users
based on the centroid of the locations where they attended
events (Spatial Criterion). The figure shows that attendance-
based strategies behave similar, with the first one having an
advantage for smaller groups, with 1.6% better prediction
when dividing users into groups of 5, and the second technique
achieving a higher prediction for larger groups. Increasing the
size of the groups increases the prediction, since more data
become available for each group and the users are assigned to
feature based groups with similar attendance frequency. The
prediction starts to converge at 72% when the size of groups
reaches 30. The third strategy shows a high advantage when
dividing the users into smaller groups, since the users that
attend events in similar venues are grouped together. However,
when the amount of groups increases the prediction does not
increase with the same slope as in the other techniques leading
to lowest prediction accuracy. Since the first strategy performs
better, we present this strategy in the following experiments.

Figure 9 illustrates the prediction accuracy for each of the
individual top-500 M-groups and for different group sizes,
sorted based on the accuracy. As can be observed, dividing
the groups to 20 and 30 users highly increases the accuracy.
However, it leads to some of the groups not being able to
qualify for the evaluation, as shown in the tail of the lines,
since we require at least 3 ∗ group − size active users at

each of these groups. Nevertheless, this evaluation shows that
each group can be tuned individually to provide maximum
prediction according to the amount of active members.

Experimental Parameters. Figure 10 illustrates the
amount of states for each of the top-500 evaluated M-groups
in sorted order. Hence, the states reach up to 201 and more
than 350 M-groups include more than 50 states. Keep in mind
that we only keep states where at least one user has attended.
This amplifies the importance of our prediction accuracy since
from each state the user can move to each one of the following
states. Note that the probability of a haphazard prediction, is
1

x−y , when the user resides in state y out of the total states x.
Also, figure 11 presents the corresponding amount of users for
the M-groups we consider in a descending order. Thus, only 46
out of the 500 M-groups have fewer than 100 users and the top
100 M-groups have more than 400 users. We note that figures
9, 10, 11 are individually sorted and they do not present the
respective data for each M-group. Intuitively, a small amount
of states and users does not lead to low predictions.

Execution Time. We present the execution time of the
Model Generator component as the iterations and the states
(events) increase, for the M-group with the highest attendance.
As can be seen in figure 12, the execution time remains almost
the same to the number of iterations, until the probabilities
converge. We present the execution times only up to 10
iterations, since we have performed all of our experiments
with 10 iterations, that were enough to define the probabilities.
As the figure shows, the execution time depends on the state
that we have reached, since it considers only the probabilities
of the previous states. However, the execution time remains
low (less than 120 milliseconds at all times), especially when
considering that these states reflect a time interval of more than
a year. The depicted spikes occur due to the small execution
time along with the processes that run in parallel.

Prediction per Category. In figure 13 we present the
prediction level at each category based on our approach. As can
be seen, categories like Hobbies and Crafts (15) have increased
accuracy since the members of a specific hobby attend most
events (frequent members) or the most important gatherings
(not-frequent members). On the other hand categories like
Food and Drink (10) have lower prediction accuracy, as the
users choose to attend a meeting based on subjective criteria.
However, the prediction accuracy is high and especially when
we divide the groups into 30 users.

Comparison. We compare PRESENT with two state-
of-the-art techniques for recommendation systems in social
network settings such as Foursquare and Facebook [12]: (i)
collaborative filtering (CF) [11], where we predict that the
next event for user n will be the same with user n’ that
achieves the highest score, based on the common attends
(score(n, n′) =

2∗|An∩A′
n|

|An|+|A′
n|

, where An denotes the set of
events that user n has attended) and (ii) the strategy of
predicting the user’s next check-in based on the individual
features, proposed in [8]. As shown in this paper, the optimal
prediction was achieved with the historical venues feature, so
we implemented that strategy. Thus, we predict the user’s next
check-in based on the venue he has visited mostly.

Figure 14, presents the comparison for the top-100 M-
groups of each category. As can be observed PRESENT
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outperforms both techniques in every individual category. The
historical-visits prediction achieves up to 47.6% (15-th cate-
gory) and the CF approach achieves a prediction up to 53.8%
(8-th category), while PRESENT achieves a worst prediction
of 72.5% and scales up to 85.8% at the 8-th category. This is
mainly because CF depends on the events that the “closest
user” will participate, while the Historical Visits approach
depends on the venues that a user visits frequently. Thus, when
users provide a few RSVPs, these techniques face a cold start,
and they cannot make accurate predictions. These approaches
work well when providing a list of recommendations but they
are not as efficient for our problem, since recommendation
systems suggest events based on rankings but the next event is
not always the highest ranked event (users might visit another
event previously). PRESENT depends on the behavior of a
group of users, that enables us to make accurate predictions,
since a cold start may occur when we instantiate the group
rather than when a user joins the system.

VI. RELATED WORK

Several event recommendation techniques that utilize met-
rics to decide for the events to be recommended to the user,
exist in the literature [4], [5], [6]. However, they do not
consider the behavior of social groups and evaluate each event
individually, rather than recommending the next event for each
user. Among the most common techniques for event recom-
mendation is the collaborative filtering [11], [12]. However, as
we show in our experiments these techniques cannot capture
well the event attendance of a user, influenced by social
interactions. Other event recommendation techniques consider
users that exhibiting similar behaviors [21], combine col-
laborative filtering approaches with content-based algorithms
[13] and recommendation systems for geographical locations
[22], [23]. However, none of these systems considers the
sequence of the recommended items (events). In [24] and [25]
they propose approaches to recommend routes and trips that
consider preferences from multiple users, but they do not aim
to predict them. Authors in [10] exploit Meetup to examine
the event recommendation based on the social graph and the
RSVPs. PRESENT differs since we focus at predicting the
following event attendance for each user. In [26] they formalize

the trade-offs between accuracy and differential privacy of per-
sonalized social recommendations, but they consider individual
recommendations rather than the next event to attend.

Several papers have been proposed in the context of
predicting the human mobility [27], [28]. However, most of
these works depend on the repetition of the users on visiting
places and fail to predict irregular movements, such as the
social events. Moreover, they do not consider the movement
of other users along with existing social ties. Authors in [29],
exploit the MMM model to predict the user’s next move.
However, their setting assumes a set of finite and predefined
states where the user can go back, while the chains in our
model change over time and the user can only move to a future
event. Moreover, human mobility differs from the user event
attendance, since a user that moves spatially needs to cross
over specific places (states) to reach his target position. On
the contrary, users can skip several events without affecting
the following events that they will participate. Authors in [30]
focus on the next location prediction for human trajectories
by considering moving behaviors of users. However, as we
explained, human mobility differs from event attendances.

Authors in [8] aim to predict the users next check-in,
based on different features of the user’s check-ins. Similarly,
in [7] they exploit HMM to determine the user’s category
and location of his next check-in. However, our work differs,
since we consider the group behavior rather than the user’s
individual characteristics. Moreover, in contrast to PRESENT
such approaches face a cold start problem when the user has
a few check-ins. In [31] they propose NextPlace, a prediction
framework to forecast user behavior in different locations, but
they focus on the temporal predictability of the users presence
and they do not consider the transitions among locations. Liao
et al in [9] aim to predict the events that a user will attend,
based on user’s event participation and the physical proximity
with other users for offline ephemeral social networks. Our
work differs since our model considers users as groups with
similar features and consequent events, rather than evaluating
individual short-term user behavior for parallel events.

Authors in [32] develop a prediction framework based on
social data to predict the location of a user at a given time.



However, they do not consider the group’s impact and they
focus on user mobility for the next few hours. In [33] the
authors attempt to infer the influence of the social environment
to the user’s movements, in terms of distance. In our paper we
evaluate groups of users, according to different criteria, and
we examine if these groups affect the event attendance by the
users. In [34] they provide an in-depth analysis of geo-social
influence in LBSNs. They assume that the behavior of a social
group affects the users, but they do not focus on predicting the
user behavior that derives from that effect.

In our previous work [35] we exploited GPS traces to
identify real-world events efficiently. Our current work differs
since we consider the events as given from our dataset and
our goal is to suggest the following event for a user to attend
considering the behavior of the group that he belongs to. Also,
in [14] we proposed an approach to combine spatiotemporal
data from heterogeneous types of networks. PRESENT differs
since we present a middleware that aims to predict the next
event that users will attend using multiple networks.

VII. CONCLUSIONS

In this paper we have presented PRESENT, our middleware
that exploits the social behavior of the human crowd to identify
group attendance behaviors and predict the next event for a
user to attend. Our experimental study with a real-world dataset
illustrates the contributions of our approach, and verify its
practicality and efficiency. For our future work we plan to
exploit whether explicit social interactions among the users
can further contribute to improve our prediction accuracy.
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