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Abstract—Location-based social networks have evolved into
powerful tools in recent years. The ability to embed location
information in Social Networks such as Facebook, Foursquare
and Twitter creates exciting opportunities for users to disseminate
and exchange geolocation information in a variety of domains.
The problem of exploiting the social ties between the users
for maximizing information reach has become a topic of great
interest, and many challenges have to be met. In this work
we study the problem of efficient information dissemination
in location-based social networks under time constraints. The
objective is to identify a subset of individuals to propagate the
information and make intelligent route selection that can result
in maximizing the reach within a time window. Our detailed
experimental results illustrate the feasibility and performance of
our approach.

I. INTRODUCTION

Recently, we have observed the explosive growth of social
networks such as Facebook, Twitter and Google+, that enumer-
ate large amount of subscribers. For instance, Facebook has
reached over 900 million active users, while Twitter follows
with over 550 million users and Google+ with more than 170
million users'. These networks have been utilized as major
tools for the spread of ideas, information and notifications
among their members. Studies reveal that social networks can
be exploited not only for “viral marketing” [1] (i.e. promote
products to targeted sets of users that further propagate them
through the word-of-mouth effect to reach a larger audience),
but also for discovering emergent topics [2] and for emer-
gency events alerting, management and public safety [3]. For
example, people located in the vicinity of earthquakes share
via Twitter, a well known social service for exchanging short
text messages, anecdotal information related to the dissemina-
tion of seismically activity, that earthquake alerts lag behind
firsthand notification [4], [5]. Studies reveal that depending
on the size and location of the earthquake, scientific alerts
can take between 2 to 20 minutes to publish, while using
Twitter’s notification capabilities people were notified about
the occurrence of the earthquakes shaking within seconds of
their occurrences.

Thus, social networks (i.e., Twitter, Facebook, LinkedIn)
can play a major role in effective emergency notification due to
their ability to (1) reach millions of users, especially family and
friends, (2) become alternative communication mediums when
the wireless and telecommunication networks are congested
during emergencies, and (3) provide cost-effective solutions
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since they are able to reach great amounts of social users
without additional infrastructure costs. Furthermore, the study
of social relationships and interactions in social networks
may provide important insights for gathering information and
planning evacuations during rescue efforts. However, adopting
location-based social networks as an effective communication
medium for emergency alerting raises considerable challenges.
Challenges lie in the level of availability and responsiveness
expected from these infrastructures in delivering notifications
under time constraints to reach all recipients interested in
receiving the information (these can be people located in the
area of the event i.e.,, students in a campus, as well as their
relatives and friends).

In this paper we study the problem of using location-based
social networks for efficient dissemination of information un-
der time constraints. Specifically, we examine how efficiently a
location-based social network, such as Twitter, can be deployed
for emergency notification. Twitter has the ability to broadcast
and forward messages to users and is primarily used via mobile
devices? so that users can be informed at anytime, anywhere as
long as they can access the network. Our objective is stated as
follows: Given a location-based social network comprising a
number of mobile users, the social relationships among users,
the set of recipients and the timeliness requirements, our goal
is to select an appropriate subset of users to propagate the
information such that (1) the expected spread of information
is maximized, (2) time constraints in the dissemination of the
information are satisfied and (3) costs are considered. Cost is
defined as the amount of messages that need to be exchanged
among users. Thus, it could be either monetary (for an SMS) or
resource allocation cost. Our primary focus is on information
that needs to be propagated under time constraints, such as
emergency information, where the notification about the event
needs to be propagated under strict time constraints.

We approach the problem in two phases. We first use a
crawling phase where user profiles are built, social relation-
ships are inferred and effective dissemination paths among the
users of the social network are computed. In the second phase,
namely reaction phase, we aim at reducing the search space
by considering only users in the social network that are in the
proximity of the interested to the event users (i.e. users related
to the event) since the event may not be of interest to all users
of the network. Then, we select a small number of seed users
that will allow us to efficiently disseminate the emergency
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information to all interested recipients during the emergency
event. Reduction of costs is accomplished by avoiding push-
based broadcasts, which is important in emergency events as
communication is typically over-utilized in such scenarios [5].

Existing information dissemination techniques are not ad-
equate to solve these problems. The problem of maximizing
the spread of influence in social networks has been addressed
in [6], [7], [8], [9], but none of these works consider time
constraints. Only recent efforts recognize that time plays an
important role in the influence spread [1], [10]. However,
contrary to our approach, these efforts assume that the in-
fluence flow is known and aim at maximizing the influence
in the entire network rather than identifying and informing
an appropriate subset of nodes that would be most interested
in the information. Furthermore, both works study cases of
viral marketing campaigns or voting systems, rather than
emergency response situations that have to operate under
tight time deadlines and resource savings. Emergency response
outside social networks has also been studied. The use of
geographical notification systems has been considered in [11].
The purpose of the presented system is to construct overlays
that support location-based regional multicasting where they
also consider issues of providing reliable storage of social
information under extreme regional conditions. Traditional
approaches such as multicast [12], [13] and publish/subscribe
systems [14] are not appropriate for our setting since they will
inform only subscribed users, while we need to alert all users
associated with the emergency event, that is, all users that
would be interested in the event and not just subscribed users.
Furthermore, the set of users to be informed by our system
is determined based not only on locational criteria, but also
on relationship criteria, so it is not considered to be a strictly
location-based approach. On the other hand, approaches like
flooding and gossiping [15], [16], [17] will inform most of
the users interested in the event, but they will also produce a
lot of spamming to the other users and load to the network.
Contrary to our work, none of these approaches takes real-time
constraints into account and no social networks are exploited
in the dissemination process.

Our paper makes the following contributions:

e  We present LATITuDE (using Location based sociAl
networks for Time constrained InformaTion DissEm-
ination), a system that solves the problem of efficient
dissemination of emergency information in location
based social networks under time constraints. The
problem is NP-hard [18] and we provide a greedy
algorithm with an approximation rate of 1-1/e.

e  We extend our approach so that we consider the au-
thoritativeness of a user in the spread of information.

e We perform extensive experiments to validate our
approach. Our experimental results illustrate that our
approach is practical and effectively addresses the
problem of informing a large amount of users with the
least messages within a deadline when an emergency
event occurs, and outperforms its competitors.

e  Furthermore, we verify our solution using a real case
scenario of emergency event by deploying it on tweets
concerning Sandy Hurricane, a major emergency event
that occurred in 2012 [19].

II. MODEL AND PROBLEM DEFINITION

In this section, we present our system model and formulate
the NP-complete problem addressed in this paper.

A. Model

A social network is typically presented as a weighted
social graph G = (V, E,W), in which each vertex u € V
corresponds to a user in the social network, each edge e, € E
represents a social relation formed among users (u,v), and the
weight w,, € [0, 1] reflects the “strength” of the relationship
among the users (u,v), based on their social interactions.

Each user u € V' that connects to the network is associated
with a unique id and is used each time the user logs into
the system. This for example might be the user’s id in the
social network. For our Twitter dataset we consider the screen
name of the user as id. In Twitter, the screen name follows
immediately after the ‘@’ character in the body of the text
(i.e. tweet) whenever a user addresses a specific user in the
network. For example “@NYTimes: Scientists have warned
of #NYC storm peril; rising sea levels, extreme weather
http://ht.ly/eUwqS #Sandy #Climate” is a tweet addressed to
The New York Times, where NYTimes is the screen name of
“The New York Times” account in Twitter.

We assume that user relationships take place and evolve
over the lifespan of the network (in order to instantiate an
edge among a pair of users the corresponding users should
be socially connected and have interacted). For each user,
we keep track of his interactions. Whenever a user w posts
a message referring to any other user v in the network, the list
of interactions I,, of user u is updated. The list of interactions
consists of tuples of the form < v, m,,, timestamp,,, teme,, >,
where v is the receiver of the message m,, timestamp,
denotes the unix timestamp when the message was sent and
time, denotes the time used by u to process and deliver the
message to user v, that involves the amount of time to process
and disseminate a message to other users, if further propagated.
Here u and v correspond to user ids, but to keep it simple
we use this notation for presenting a user. The data of the
interactions list are retrieved and processed for determining the
weights of the social relationships among users in the graph.

Several mechanisms exist for assigning weights to edges as
stated in the related work section [20], [21], [22]. Our model
is generic enough and can be extended so that several metrics
can be considered. Yet, finding the most appropriate metric is
not subject of this study so we consider a simple but popular
metric based on the frequency of communication.

Frequency of communication (FC). It is usual that within
a social network users that are closely related interact more
frequently. Thus, the strength of the tie between users can be
measured using the frequency of communication. We define
frequency of communication between a pair of users (u,v) as

follows:

i€ly

where > |m,| denotes the total amount of messages in the
interaction list I,, of user u referring to user v and ) |m;|
denotes the total amount of messages in I, referring to any
other user 7.



Thus, f,, expresses the amount of messages sent by user u
to v out of the total messages sent by user u to any other user
i in the network. Note that f,,,, differs from f,,, since Twitter
presents large asymmetry in the relations due to broadcasters
and miscreants [23]. That is, there are users with a high
number of followers but few followees (broadcasters) and the
opposite (miscreants). We normalize the weight for all users,
by computing the weight w,,, € W of the edge e,, € F as:

Wyy = fuv/maz{ fuy 1 v € neighbor(u)} (2)

The above metric is used for automatically computing the
“strength” of the social tie among users, without user partic-
ipation. The weight of the edges takes values in the range
of (0,1], where a value of 1 denotes a strong relationship
between the users. As stated earlier, other metrics can also
be defined. For example, in emergency situations, users may
be given the chance to define a list of “emergency contacts” or
the system may denote some nodes as “authorities” that should
always be given higher priority in the dissemination process.
For example, for users v that constitute authorities, the weight
of the edge e,, € E equals 1, for all nodes u that have v
in their interaction list I, regardless of the metric (further
discussed in Section IV-C).

In our system we differentiate among the following roles
for the users in the location-based social network, based on
the way they are related to the emergency event (as shown in
figure 1): (a) Interested nodes denote users that are interested
in the occurrence of the event; these are subset of nodes in
the social graph that are either known to be geographically
in the proximity of the event or have strong social ties with
users related to the event. They constitute the set of nodes
our system aims reaching through the dissemination process.
(b) Reachable nodes are the set of nodes that are accessible
immediately after the occurrence of the event, i.e. these are
connected to the network and thus information can be directly
delivered to them to further disseminate it. Reachable nodes
are not necessarily a subset of the interested, but we assume
that these are in the proximity of interested nodes on the social
graph or some type of authority (discussed in Section IV-C).
For instance, during the Sandy Hurricane that took place in
October 2012 and severely affected New York City [19], all
citizens needed to know about the event. Thus, the interested
set consists of all New York citizens and their relatives that
may not be presented to New York and also users that were
about to visit New York. When the event took place, not all
users had access to the Internet and social networks. The users
with active mobile devices that were connected to the network
constitute the reachable nodes. Among these users, the system
needs to identify the most efficient users to propagate the
information needed to the interested users and these constitute
the seed nodes.

B. Problem Definition

Given a weighed social graph G, a subset of vertices S C
V' that constitute the interested nodes, a subset of vertices R C
V' that constitutes the reachable nodes a time bound Deadline
and an integer k, so that k < |V, our goal is to extract a set of
nodes M C R, denoted as seed set, to maximize the expected
number of interested nodes in .S that will be informed by nodes
in M before the Deadline, under the condition |M| < k.

Thus, our problem is to define the maximum amount of
nodes from S that will be informed within the Deadline,
provided that the amount of k£ seeds cannot be exceeded. We
also note, that not all nodes are online in our system. Thus,
our goal is to maximize the spread of the information, from
the k& nodes selected to disseminate the information, under the
restriction that nodes selected are reachable.

Traditional influence maximization problems [9], differ
from our formulated problem in two ways. First, traditional
models ignore any time delays in propagating messages among
users in a social network. The propagation delay corresponds
to the time to propagate a message along multiple edges
between users, (i.e., through the wireless or wired communi-
cation medium) and includes the time to receive, process and
selectively propagate the messages. In traditional models any
propagation delay is thought to be constant or simply ignored.
Contrary to traditional models, we associate each edge with a
latency, which denotes that if a message was sent at time ¢
from node u along the edge e, and 0 is the estimated delay
to forward the message across the edge, then we expect that
the message will reach node v at time instance ¢ + 4.

A second important difference, is that, we aim at propagat-
ing the information to a subset of the nodes in the location-
based social network, S, which are affected by the event,
referred as interested nodes. Hence, our goal is to maximize
the amount of interested nodes that will be informed, instead
of maximizing the amount of informed nodes on the whole
graph. A fundamental challenge in our setting is that the
nodes’ reachability derives from their physical connectivity.
That introduces additional constraints on the availability of
the nodes to act as seeds, since only a subset R of nodes can
be accessed and seeds must be selected among those.

Similarly to the Independent Cascade (IC) Model [9], there
exists only one chance that a node will forward the message
to its neighbors, after it is informed.

The traditional influence maximization problem, without
considering time constraints, has been shown to be NP-
complete [9], [18]. Considering time deadlines imposes ad-
ditional complexity to the problem. Since the problem is NP-
complete we develop an approximation algorithm to solve the
problem efficiently, within the defined time constraints.

III. THE LATITUDE SYSTEM

In this section we provide an overview of our LATI-
TuDE system. The system is implemented with the following
five main components that work in concert: i) a Profiling
Component, ii) a Social Graph Component iii) a Latency
Estimation Component, iv) a Path Generator Component and
v) a Dynamic Notification Component.

The Profiling component is responsible for maintaining
data about user interaction in the location-based social net-
work. It uses raw data collected by the network to build user
profiles and extract statistics. It is responsible for updating
user’s interaction lists (discussed in II-A). These data are
later used by the Social Graph Component for computing
the weight of the edges on the Social Network. We consider
the graph given and only aim at computing the strength of
the relationships formed between users. Data selected and
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Fig. 1. The LATITuDE Architecture.

computed by the Profiling component are also used for the
latency estimation in the delivery of the messages.

The Path Generator Component computes for each node
u € V in the social graph, the effective paths beginning at node
u. The effective paths for a node w represent the likelihood that
messages generated or messages that reach node u, will be
propagated along those paths. In the simple case, all paths can
be examined to decide whether a message will be effectively
disseminated along them. However, to reduce the search space,
we consider only those paths whose probability exceeds a
tunable threshold e, and whose length is at most L hops.
The Latency Estimation Component implements a probabilistic
model to estimate the latency of the messages disseminated
along the path. This is used to identify the probability of a
message being delivered among two nodes in the social Graph
before a predefined Deadline. The Deadline is a relative
value, and denotes a time interval starting from the occurrence
of an event, within which all interested users must be notified.
All the above components are deployed in the crawling phase.

Finally, the Dynamic Notification Component is triggered
in the reaction phase when an emergency event occurs. This
component utilizes the information stored and maintained by
the previously discussed components to identify the initial re-
ceivers of the message (i.e. seeds) so as to maximize the spread
of information among interested users within the Deadline,
while using the least amount of messages.

The overall architecture and the interaction between differ-
ent components is depicted in Figure 1 and the corresponding
functionalities are described in the following sections.

IV. EFFICIENT DISSEMINATION OF EMERGENCY
INFORMATION

A. Crawling Phase

During the crawling phase, the following pieces of infor-
mation are precomputed: the effective paths of the nodes, and
the latencies along the paths are estimated. Below we give a
detailed description of their functionality.

1) Computing Effective Paths: To reduce the complexity
of the Social Graph component during the reaction phase, we
precompute and store the most effective paths for each node
u € V. The set of effective paths contains all paths whose
probability exceeds a threshold ¢, and their length is at most L

edges (in our experiments we choose a length of at most 7 hops
based on the findings of the small-world experiment [24] where
they show that a message traverses an average of up to 5.2 links
in the network, note though that choosing shortest paths has
been proved equally effective). When a path’s probability is
below ¢, this path is not further considered. This process is
performed by the Path Generator Component.

The paths are explored using a Depth First Search (DFS)
approach. However, for each node © € V, we do not keep
track of the whole path to any other node. We only keep the
destination node v € V' and the path probability to that node.
Since there may be multiple paths between a pair of nodes
(u, v), only the most optimistic path probability is maintained.
So, for each node u € V' we compute a set of nodes v € V
towards which u has effective paths, along with the efficiency
of the path. The path probability is calculated as:

P(% U) = Hu/,v’epath(u,v)w(u,> ’U/)a S [Oa 1] (3)

where w(u’,v") denotes the weight of edge u',v’ in the
original graph G(V, E, W). Essentially, this metric denotes the
probability that the message generated at node w is delivered
along the entire path to reach node v, computed by multiplying
the probabilities of each individual edge in the path being
traversed. We choose this path probability metric in our
experimental evaluation, similarly to [8].

2) Estimating the latency of a path: In this step, we use
the information stored in the Profiling Component and the
effective paths computed in the Path Generator Component to
estimate the delivery delay along these paths. For all effective
paths among two nodes in the location-based social network
we use our probabilistic model to estimate the probability of
time constraints being met.

In order to select the most appropriate paths the next
step is to estimate whether the message will be successfully
delivered along these paths given the real-time requirements.
Thus, for each path we determine the probability that the
message will be received on time. It has been shown in [25]
that in location-based social networks like Twitter the delivery
time of a message follows the Power Law Distribution [26].
That means that the delivery times time, among two users
should cluster around a typical value. Hence, we compute the
probability p,, ., (Delivery, ., < Deadline), using the CDF
of the Power Law Distribution. We compute the Delivery, .,
based on the past user behavior, i.e. previous message ex-
changes among users, provided by the Profiling Component.
Essentially, the delivery metric is determined from the motifs
of communication among users.

A quantity x obeys Power law when it is drawn from a
probability distribution p(q) < ¢~*. The « parameter, known
as the exponent or scaling parameter, is a constant parameter.
To define the probability mentioned above we need to use
the CDF of the Power Law distributed variable, denoted as
P(q) (with ¢ being a variable), which is defined as P(q) =
Pr(@ > q), where @ is the observed value. Thus, P(q) =
fqoop(q')dq’ = (qm%)*aﬂ, with gmin > 0 being a lower
bound on the Power Law behavior. Finally, « is computed as:
a=1+n[>", lnquii_lm}_l, where n denotes the amount
of ¢; values.



In our approach, the ¢; values represent the message
delivery times among two users u and v. Thus, we use the
information stored in the user’s u profile to obtain the observed
delivery times t¢me, to user v denoted as Deliveryy .,
in order to compute the probability p,—_,,(Deadline) and
thus the probability that the delivery time will exceed the
Deadline value. The lower bound g,,;, is set as the minimum
measured delivery time for a message among v and v. Since
the path might follow more than one hops the observed
values should represent the summation of all combinations of
observed times in the specific path. For instance, for the path
a — b — c the set of g; values will be generated as follows:
{(timeq—p + timep_,c)|Va — b,Vb — ¢}, retrieved from the
Profiling Component. The probability is computed as:

DPu—so(Delivery, ., < Deadline) =1 — (py—(Deadline))

C))
Hence, we estimate the probability of a specific path to
effectively deliver a message before the deadline, from its
starting node u to the destination node v.

Though Power Law Distribution is chosen, since it is
the most common distribution characterizing the messages
delivery times over social networks, any other distribution
may be used to extract probabilities of timely delivery. Note
that during emergency events, users tend to use the network
more frequently and dissemination is expanded rapidly [5].
Our predictions underestimate this factor, which could make
our model more efficient, by assuming that dissemination
distribution during the event will not change drastically.

B. Reaction phase

The basic functions of the reaction phase is to locate the
interested and the reachable users on the social graph and
select among the reachable an initial set of nodes (seeds)
that have the most effective paths with the interested users,
so as to increase chances of the message being effectively
delivered during the propagation. This process is executed by
the Dynamic Notification Component of the system. Note that
our System cannot affect the dissemination process, except
from choosing the appropriate seeds. Thereafter its up to the
users to further propagate the information.

We consider the process of locating interested users quite
trivial, since they can be detected for instance based on their
latest geographical location or by given lists (e.g. students of
a University Campus). Detecting the reachable users is also
trivial (e.g. users that are online), so we will not further discuss
these processes and consider them given.

1) Seed Selection: Given a number of candidate effective
paths and the users that our system aims at reaching (i.e. all
users interested in the event), our goal is to select the seeds so
as to maximize the information dissemination to the interested
users when the event occurs .

Let R be the set of reachable nodes (discussed in Section
II-A). We compute the efficiency of the candidate effective
paths, that begin with a reachable node u € R and end with a
targeted interested node v € S as follows:

ef(u,v) = wip(u, v) + WoPy—sy (Delivery, ., < Deadline)
&)

In this paper we consider the same weight for the path
probability and the delivery probability as wy = ws = %
(i.e., we consider equally important that the message is timely
received and successfully reaches the receiver), however, these
parameters are tunable and can be adjusted at run-time based
on the goals of LATITuDE, to either maximize the information
spread or to deliver more messages within the deadline. After
computing the efficiencies of the candidate effective paths, the
greedy algorithm starts to choose the set of Seed nodes M.
The greedy process for the seed selection is described below.

Greedy Node Selection: Consider a set of seeds M, a set
of nodes A that consist of the nodes that we expect to be
informed by M with high probability, thus M C A, the set
of interested nodes S, the set of reachable nodes R, and a
candidate seed u € R to be added in M. The greedy step for
the selection of u is:

MUus.t. o(u) =maz{o(u) :Yu € R\ A} (6)
(ZUGS\A ef(u,v))?
[Q\ A

In the above equation Q C S and Vv € (@ there exist an
effective path path(u,v) starting by wu.

where

o(u) =

Intuitively, o(u) computes the number of interested nodes
v € S informed when u is selected as the root of the dissemina-
tion process, while taking into account the average probability
that those nodes are effectively informed. Nodes that are
possibly informed by previous seeds selected, i.e., nodes in
A, are not added to the efficiency of u. Thus, the algorithm
may produce a seed set that has multiple seeds reaching the
same node in S, i.e., consider nodes in w1, us € M that both
have paths to node v € S. This case is not undesirable since
the chance of v being informed is increased.

Algorithm Description: Initially the seed set is empty,
M = (). In the first iteration, the efficiencies of all reachable
nodes u € R are computed. Only paths ending to a node
v € S are considered in the computation of the efficiency
of u. When all efficiencies are computed the best node is
added to the seed set and all possibly informed nodes v € A
by this node are identified. The set A is computed using
Monte-Carlo simulations while considering as the only seed
the node wu, selected to be added at the seed set M. We
only add nodes that are informed with high probability 6 as
derived by the simulations (in our experiments we set 6 to
0.9 and 10000 iterations are set to be executed for the Monte-
Carlo Simulations). In the next iteration, efficiencies for the
remaining reachable nodes are computed. Interested nodes in
A are not added to the efficiency of a node, and nodes in A are
not candidate seeds. The process is repeated until all k seeds
are selected, or no more new seeds can be added in the set.

Monotonicity, Submodularity and non-negativity. The func-
tion suggested for the seed selection process is monotone,
submodular and by-definition non negative. So our greedy
algorithm, according to [27] achieves an approximation rate
of 1-1/e. Let F'(M) denote the set of interested users that will
be informed by the seed M. We have F(M) < F(M U u)
since a node u as selected by o(u) adds interested nodes
to the set of informed that are not already informed by
M, that is u will add nodes to F(M). So our function
is monotone. Our function is also submodular. Let M; and



M, denote different set of seeds with M; C Ms. We have
F(Ml U U) — F(M1> > F(MQ @] u) — F(MQ), since in U(U)
function when a node is added its efficiency over previously
informed nodes is ignored but exists. So if M; C My w added
to M; adds more value to F'(M), that is greater amount of
previously non-informed interested users is added to F'(M).
Thus, our greedy algorithm has an approximation rate of 1-1/e.

Worst Case Complexity of Seed Selection. Since our goal
is to identify k£ seeds, we have at most k iterations to select
them, with one seed being selected in each iteration. In every
iteration we compute the most efficient node. Thus, for each
node u € R, we need to compute ef(u,v) (that costs O(1))
with every node v € S, that is O(|R||S|), if every node in
R can reach every other node in S. Determining the node
with the maximum value costs only O(1), since we store the
best node as we traverse through nodes in R. For the Monte-
Carlo simulation to determine the nodes that will be informed
by the selected seed node, we have to iterate through the S
nodes and define if the nodes are informed, that costs O(1),
so the complexity of this step is O(|S]). Thus, the worst-case
complexity of our algorithm is O(k|R||S|).

2) Dissemination of Information.: Assuming a selected
set of seed nodes M, our model propagates the emergency
information as described below. We denote A; as the set of
nodes informed at step t. At the beginning, only the seed
nodes are informed and thus Ay = M. At step t + 1, every
node u € A; can inform each of its currently uninformed
neighbors v and the probability of node u to inform v is given
by the weight of the edge (u,v), wy,. Each node has a single
chance of informing its currently uninformed neighbors about
the event in step t+J, where ¢ represents the delay of a user to
forward a message as estimated from the Profiling Component.

C. Authorities as seeds

During major emergency events, there are often principal
emergency authorities, such as city officials, emergency per-
sonnel etc., that are given higher priority in the alerting and
notification process. Authorities often use social media for
issuing emergency alerts or spreading emergency information?.
Thus, we also present an alternative approach, where certain
nodes are given higher priority in the seed selection process
according to their importance or reliability.

Authorities are considered more reliable and thus user may
be less reluctant in further propagating their messages. Thus
they act as better seeds. To incorporate them in our algorithm
we consider that among the k seeds selected, a part of it will
constitute authorities and they are added to the set regardless
of their score estimation at the greedy step. Thus we initially
select all authorities and then seed selection as described
in IV-B follows for the remaining seeds. Let T be the set
authorities. The seed set M is now formed as: Vu € T, M U,
and then the greedy step takes place until all k seeds are added
to M or no more seeds can be added.

Since we have no designated users with distinct roles in
our dataset, we define as authorities nodes that have a high
amount of followers compared to the ones they follow. Note

3http://www.w3.0rg/2007/06/eGov-dc/papers/
ElectronicgovernmentLibaryofCongress

that there might be other ways to define authorities, but this
is not subject of this study. So for our experiments we choose
a fixed number of authorities (that is set to 5% of all seeds)
and we add nodes as described below:

TUwu s.t. d(u) = maz{d(u) : Yu € V} ™)

where d(u) = inDegree(u) — out Degree(u)

Nodes are added to T until the desired number of author-
ities is satisfied. Then, we add to the seed set the nodes that
were selected as authorities and out of the k nodes that we
wish to use as seeds we select the k — |T'| nodes to be added
in the seed set using our algorithm. Unlike previously, the
algorithm has an initial set of seeds M that consists of the
nodes in 7" and is non-empty and the set A consists of all
users possibly informed by T'. The algorithm then selects a
seed set of k—|T'| seeds or less if no more nodes can be added,
and thus the final seed set consists of at most k nodes in total
(authorities and users selected as seeds). The dissemination
process information varies in how the authorities inform their
users. In the non-authoritative seeds, the communication is
personal, and thus follows the out-degrees of the seeds, i.e.,
user v € M directly communicates with its out neighbor v.
Authorities do not follow personal communication flow, but a
rather broadcast form of communication. So for the authorities,
all followers are informed, and so, the flow of communication
follows the in-degrees. The authorities are also promoted for
efficiently delivering the information timely, that is they have
higher chances of timely informing their followers.

V. EXPERIMENTAL EVALUATION

We have implemented our LATITuDE system and tested it
with two real-world Twitter datasets. The first dataset consists
of tweets related to the area of Dublin without any specific
topic of interest. The second dataset consists of tweets referring
to the Sandy Hurricane.

The experimental evaluation focuses on: (i) Execution
time compared to state-of-the-art techniques, (ii) Number of
informed users among users that are interested in receiving
alerts, (iii) Number of informed users before the Deadline
expires, (iv) Scalability based on the amount of seed nodes
selected, and (v) Performance under different deadlines.

Note that, proving the efficacy of our metric for computing
the edges weight, is out of the scope of our study. Both state-
of-the-art algorithms and our LATITuDE system, are given
the same social graph as input. Thus, we argue that given
any other weighted social graph and past interactions between
users, LATITuDE would perform equally well compare to any
other influence maximization algorithm.

A. Evaluation using Twitter data

First we consider a dataset that is composed of 513.449
tweets posted by 175.974 unique users in the city of Dublin,
crawled from Dec 2012 to Mar 2013. The tweets were col-
lected by the Twitter Streaming API* and were filtered so
that only tweets related to the area of Dublin are contained
in the dataset. The filter is applied: (i) to the “Location” field

“https://dev.twitter.com/docs/streaming-apis
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exported from the user account, (ii) to the GPS coordinates
included in the tweet or (iii) at parts of the text of the tweet[28].
After the above tweets are extracted, all tweets from user
accounts presented in the dataset are gathered using the REST
APP’ and users’ ID. Tweets in our dataset have the following
structure: <Tweet ID, User ID, UTC/GMT timestamp, Latitude,
Longitude, ID of tweet replying, ID of user replying, Number
of retweets, Source (Andoid, iPad), Text>. User ID is used to
obtain the screen name of the user, the UTC/GMT timestamps
are used to estimate the latency for the tweet to be propagate
along edges and the Text is used to extract the users mentions
with the ‘@’ symbol. No further information related to the
users is used. The latency is estimated based on users regularity
of communication (e.g. user w contacts user v twice a day).
The higher the regularity is, the lower the latency is estimated.
We do not consider any anonymization issues [29] since we
assume that the system is used by a trusted agency.

1) Parameter Setting: Our threshold parameter e for the
efficient paths was set to 3170. We choose this in concert
with the datasets used in [8], [1]. Since our dataset did
not contain delivery times, for the experiments we have as-
signed the Delivery,_-, times based on the regularity of
communication between users. Thus, each user is assigned
a random lowest delivery time ¢, that ranges in [5,10] and
the Delivery,_~, is computed as t,/ry, where r,, =
1/1og (dyy + 1) with (d,,,+1) denoting the average time lapse
(e.g. days) between u and v communication. Hence, we expect
that a user that communicates very frequently with another user
is going to inform him/her quickly when an incident occurs,
compared to a non-frequent contact. Nevertheless, the selection
of the delivery times is orthogonal to our proposed methods.

2) LATITuDE Evaluation over IRIE: In this section we
present the performance of our approach and we compare
it with the state-of-the-art algorithm IRIE [30], which is the
fastest algorithm in the literature that we know of and is able
to perform influence maximization equally effectively to its
competitors. IRIE is a system based on Influence Ranking and

Shttps://dev.twitter.com/docs/api
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Influence Estimation. It has a greedy step in which the node
with the largest marginal spread is added to the seed set. The
spread is computed based on Monte-Carlo simulations. After
a seed is added its additional influence is estimated.

In the first set of experiments we present our approach for
the Dublin Dataset when we set 10% of the users as reachable
(2392) out of the interested set (this corresponds to a set of
23913 nodes). We have set a deadline of 15 seconds to send
the messages to all the interested nodes. Figure 2 shows the
execution times of each approach as a function of various
amounts of seed nodes. As can be observed, LATITuDE needs
a lot less time to execute compared to IRIE that reaches up
to 11816 seconds for 1000 seed nodes, when our approach
needs only 156 seconds. This is mainly due to our crawling
phase in which effective paths are precomputed and it shows
that IRIE cannot be used for emergency response systems. In
figure 3 we present the percentage of interested nodes that
each approach can inform, relative to the users informed if all
reachable nodes were selected as seeds. LATITuDE manages
to inform more users than IRIE at all times, with a percentage
that ranges from 7% to 12%, although our approach needs a
lot less time to execute. Finally in figure 4 we illustrate the
percentage of the interested nodes that were informed before
the deadline expires. As can be observed, LATITuDE informs
the greatest amount of users within the deadline, due to the
Latency Estimation Component, that considers the delivery
times for each path. As the number of seed nodes increases,
IRIE reduces the gap from LATITuDE, since more seeds can
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inform more users in fewer hops. However the difference
is still more than 10 units per cent for 1000 seeds. It is
also important to mention that we start to consider the time
interval until the deadline only after the seed selection for both
approaches is completed; thus, the gap among LATITuDE and
IRIE for the percentage of users being timely informed would
be a lot larger if execution times were considered.

In the second set of experiments we consider 20% of the
users being reachable (this corresponds to 4784 users) and a
deadline of 30 seconds (we have computed that in our dataset
30 seconds is the average time needed to forward a message
using our technique, without considering the delay estimation,
by setting ef(u,v) = p(u,v)). As can be observed in figure
5 the execution times slightly decreases over the reachability
of 10% for both techniques but overall they have the same
behavior. Figure 6 presents the percentage of interested nodes
that were informed and we see that the percentage has been
reduced, since we have the same amount of seeds as previously
but relatively to 20% reachable nodes instead of 10%, that
is if all 20% act as seeds we expect more users to be
informed compare to 10%. However, the percentage of users
that LATITuDE manages to inform is more than 9 units percent
over IRIE at all times. In figure 7 we illustrate the percentage
of the interested nodes that were informed within the time
constraints. As can be observed more users are informed within
deadline, as expected, since we set a laxer deadline.

We note that in figures 4, 7 as the number of seeds
increases, the gap between LATITuDE and IRIE is reduced.
This is because the intersection of the seed sets selected by
LATITuDE and IRIE contains more nodes as the seed set
increases. We expect that they would converge as the amount
of seed nodes increases. The sharp angle at 50 seeds occurs
because we set seeds from 0 to 1000 seeds with step 50.

The additional nodes added to the seed set do not provide
any tremendous difference to the nodes being informed and
a stabilized performance is observed. This may be due to the
sparsity of the graph. Also, when the number of reachable
nodes is increased the performance for both algorithms drops,
since more users are informed by a broadcast approach,
yet LATITuDE manages to inform up to 50% compare to
broadcasting with a lot less messages on the network.

We argue that 10% to 20% of reachable users is a realistic
proportion since when emergency events occurs not many
users have access to the Internet and are connected to a
social network service. Yet, there is no study revealing the
amount of users that are actually accessible via social networks

immediately after an emergency.

Finally, we compare our approach with the alternative of
considering the authorities for the seed selection. We have set
a deadline of 15 seconds with 20% reachable nodes. When
using the authorities in the Dublin Dataset there is no particular
difference in the number of interested users being informed
and thus we do not provide that figure. However, there is a
noticeable difference in the number of interested users being
timely informed about the event as shown in figure 8. Thus,
although the same amount of users is informed when the
authorities are employed at the LATITuDE system, we manage
to inform up to 21% more users within the deadline.

B. Evaluation of LATITuDE on Real Case Emergency

Our second dataset consists of tweets referring to the
occurrence of Sandy Hurricane and are collected as described
in [31]. We used 160704 tweets that correspond to 156490
users and 39100 edges for a time period from October 22 to
December 31 of 2012. The dataset does not contain all fields
that are needed, so we further crawled Twitter to extract the
timestamps when they were published and the GPS locations of
the tweets that were tagged with geolocation. Figure 9 shows
the locations where tweets concerning the Sandy event were
published. As can be seen, the event was of global interest,
but most tweets were published in the areas that were directly
affected by the occurrence of the Hurricane (i.e. N-E America).

User tweeting behavior for the Sandy Hurricane is pre-
sented in figure 10, where it can be observed that few users
post a large amount of tweets. Also in our datasets a few users
have many followers. These observations are in accordance
with [23]. The results are similar for both datasets, and so
we can conclude clusters of broadcasters, acquaintances and
miscreants exist in our datasets as well and that our datasets
are representative of users actual behavior in the network.

1) LATITuDE performance on Sandy Hurricane: We con-
ducted the experiment of comparing the authorities over the
simple seed selection process on the Sandy Hurricane dataset.
We set the interested users at 19334 nodes which constitutes
1/8 of the users in our dataset. We consider this to be a
representative amount since as can be seen in figure 9 the event
draws global attention with a large amount of users not being
geographically interested in the occurrence of the hurricane.
‘We consider 20% of interested users as reachable nodes (3867)
and the deadline was set to 15 seconds.

In figure 11 we present the percentage of interested nodes
informed. We set the authorities to be 5% of the seed set. For
small seed sets, the simple seed selection manages to inform
greater amount of interested users. This is because the selected
authorities might be few hopes away of the interested users,
thus the simple seed selection may choose better seeds. As
the amount of seeds increases, we see that the gap decreases
until both algorithms perform equally well. However, as can
be seen in figure 12, authorities achieve a higher percentage
of timely informed users.

Discussion: From the experimental evaluation we conclude
that when we have tighter deadlines, it is better to add author-
ities to the seed set, while if we aim at maximum reachability
with a relaxed deadline, LATITuDE seed set selection is
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preferable. We also state that in the case of emergencies
the frequency of communication increases, thus both models
perform much better in informing almost every user timely.
That proves that our predictions underestimate the factor of
increased communication rate (section IV-A), and that leads
our model to actually perform better than estimated.

VI. RELATED WORK

Social Networks have attracted interest in exploiting their
capabilities in recent years. Recent studies reveal that up
to 70% of users have access to social networks via mobile
devices®, providing challenges to explore the abilities that
social network offer.

Social network of users is typically depicted as a weighted
graph. Nodes of the graph represent users of the network and
the edges express relations between pair of users. The weight
of the edges captures the strength of the tie, expressing the
affect that a user has over his/her fellow or social relationship
strength. Inferring the edges’ weight has been part of several
studies. Edgerank is a metric recently announced by Facebook
for determining which items to populate on users news feed.
Affinity of users, interactions between users, sort of interaction
and time elapsed between last interaction are considered in
the metric to determine the strength of the bond and order
news feeds [21]. Goyal et al [6] consider a number of metrics,
including the Weighted Cascade (WC) model, the Trivalency
model and learning model. The WC model defines the weight
of the edges ey, as 1/in—degree(u) for all v € neighbor(u).
The Trivalency model randomly and uniformly peaks values
from the set {0.1, 0.01, 0.001}. In the learning model they
use the Expectation Maximization based method suggested by
Saito et al [32] on a training set to extract edge probabilities.
The asymmetry presented in social networks is being captured
by the metric defined by Hangal ef al in [20] where they argue
that the strongest paths in global social search may be better
that the shortest, so they aim in improving global social search
by exploiting edges weights in the network. Xiang et al. [22]
suggests a latent variable model for predicting the strength of
a social tie, based on interaction and user affinity. However,
data required by their model may not be publicly available
due to user’s privacy settings and thus their metric may not be
applied in all applications.

Social networks as dissemination mechanisms have been
part of many studies, in a variety of fields of viral marketing
and voting systems. The goal is the influence maximization

Shttp://blogs.adobe.com/digitalmarketing/digital-marketing/mobile/adobe-
2013-mobile-consumer-survey-7 1-of-people-use-mobile-to-access-social-
media/

among all users of the network, with a small seed set to spread
the information. Kempe et al. [9] were the first to formulate
the problem of influence maximization in social networks
given the weights of the social graph and suggested cascade
models followed by users in the social networks, namely
Independent Cascade (IC) Model and Linear Threshold Model
(LT). In the Independent Cascade model whenever each user
informed has a single chance of spreading the information to
his/her neighbors and in the Linear Threshold model, users are
associated with a threshold and when the sum of the edges of
his/her already informed neighbors reaches the threshold, the
user is then informed. Hangal et al. [20] explore the ability of
social networks to disseminate a specific piece of information
to particular users, in a way similar to the real life, where
users try to get in touch with an expert using their already
existing social ties. Influence probability and propagation is
also a case of study in [33], where past propagation traces
are considered in order to accurately predict the information
spread among users. None of the above studies considers time
in the propagation process.

Closer to our study are the works of Chen et al. [10] and
Liu et al. [1]. Chen et al. associate with its edge aside from the
probability of propagating the information, the meeting prob-
ability. Based on that, they suggest variations of Independent
Cascade and Linear Threshold model to estimate the timely
propagation of information. Liu et al. [1] suggest a simulation
based approximation algorithm for solving the problem of
influence maximization under time constraints in social net-
works and associate each edge with probabilities expressing
the chance of distributing the information within a specific
time lapse. Efficient influence maximization in time diffusion
networks is studied by Gomez-Rodriquez and Scholkopf [7] in
which information or influence can be propagated in different
rates across different edges. Wang et al. [8] suggest variations
of the Independent Cascade model similar to [10] in order
to minimize the computational cost. Similarly to ours, paths
whose probabilities are below a given tunable threshold 6 are
excluded. These approaches, contrary to our work, consider
the influence graph given and try to maximize the influence
spread in the entire network rather than a particular subset of
users in the network that are most likely interested in receiving
the information. They also focus on viral marketing campaigns
or voting systems that do not have to operate under tight time
constraints and resource saving, unlike emergency notification.
Finally, none of the above works consider location information
in the dissemination process.

Emergency notification with users having different roles
according to their correlation to the event is studied by
Kyungabaek et al [11]. They suggest two types of users,



the ones located to the area of the event and those socially
connected to them. They propose a system for alerting users
that is aware of the geographies and social ties of the users.
Social diffusion process is customized so that good propaga-
tion initiators are selected. In our previous work [18] we have
proposed ESCAPE, which is an information dissemination
approach. ESCAPE differs from LATITuDE in a number of
ways. ESCAPE does not consider neither real-time constraints
in the dissemination process nor the authoritativeness of the
users in the spread of information, both of which are important
criteria in emergency response situations that have to operate
under tight time deadlines and resource savings. Contrary to
ESCAPE, LATITuDE does not aim at just maximizing the
spread of information to a subset of users, but in doing so
timely. Furthermore, in this work we validate the efficiency
of our solution not only with Twitter data, but also with data
obtained from a major emergency event, the Sandy Hurricane.

VII. CONCLUSIONS

In this paper, we have presented our LATITuDE middle-
ware that investigates the relationships and interactions among
the members of a social group, and develops a dissemination
mechanism to maximize the information reach within a time
constraint after the occurrence of an emergency event. As we
illustrate in our experimental evaluation, LATITuDE is able
to execute orders of magnitude faster than the state-of-the-
art technique IRIE as the number of seeds increases, while
we also manage to inform more interested users. Furthermore,
LATITuDE is able to inform considerably more users within a
predefined deadline due to its intelligent seed selection process.
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