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Abstract—In the recent years we have witnessed a prolif-
eration of distributed stream processing systems that need to
operate efficiently, even when data bursts occur. Examples include
road traffic networks, processing of financial feeds, network
monitoring and real-time sensor data analysis systems. An im-
portant challenge in managing these systems is effective resource
management and meeting the QoS demands of the stream
processing applications under different workload conditions, even
under bursts. In this paper we present our approach that aims to
predict the execution times of the distributed stream processing
applications by taking into account the effects of the bursts and
what is the typical workload of the stream processing system.
Our approach builds application data rate patterns at run-time
and predicts the effect of the burst on the performance of the
applications, to identify whether there is a need to react on the
onset of a burst. Our detailed experimental results over our
Synergy middleware illustrate that our approach is practical,
depicts good performance and has low resource overhead.

I. INTRODUCTION

Over the recent years, we have observed a rapid growth
of applications that need to operate on continuous real-time
data streams, where the stream data are typically generated
from sensors embedded on ubiquitous devices, such as smart-
phones, tablets, etc. Examples of such applications include
transportation systems, medical alerting, network traffic mon-
itoring systems, multimedia streaming, online processing of
financial feeds, real-time sensor data analysis systems and
environmental monitoring systems. These are typically fed
into a Distributed Stream Processing System (DSPS) [1] and
processed in real-time in order to identify events of interest.

Various factors make the management of these systems
challenging in practice. First, the majority of the applications
in the distributed stream processing systems have inherent
time constraints on the execution of the data (i.e., detecting
congestion on a road network). However, meeting the QoS
constraints, i.e., real-time constraints, of the applications is
a challenging task, since (1) the workload in these systems
can vary due to the dynamic nature of the data streams, and
as a result the applications need to cope with time-varying
load spikes and often bursty workloads, (2) the occurrence
of a burst is difficult to be predicted in advance, and (3)
the applications are deployed over shared infrastructures and
thus they compete among each other for system resources
when executing concurrently. Furthermore, these are complex
decisions, where the actions taken to address changes on one
application may significantly affect the remaining applications,
and thus require significant planning. Hence, a fundamental
challenge to the effective operation of the DSPSs is their ability

to manage the applications and the resources efficiently, even
in the face of unpredictable events such as load spikes or highly
bursty data.

Burst management has recently been identified as being
critical and several techniques have been proposed. One com-
mon online solution is to apply load shedding [2]; however,
this randomly drops data units based on resource thresholds, in
order to reduce the load without considering the importance
of the data and as a result significant information may get
lost. Feedback control approaches (such as the work in [3])
are also not efficient as they adjust the overall CPU utilization
on the processors in order to meet the application timeliness
requirements. These are best used to control the aggregate
performance of a distributed system, rather than building flex-
ibility in the system parameters in terms of the application pa-
rameters. In our previous work we have proposed a distributed
solution that uses measurements of elapsed times, application
projected latencies and measurements of resource loads to
dynamically determine a new rate allocation adjustment for
distributed real-time stream processing applications, to react to
bursty situations [4]. We have also proposed BARRE [5] that
relies on an offline phase to identify all feasible allocations that
we can choose at runtime. All the above approaches are either
reactive or use offline information, and they do not consider
the effect for reacting to the burst, especially when bursts are
transient and may occur only for short periods of times.

In this paper we present an approach that aims to es-
timate the impact of the bursts on the response times of
the distributed stream processing applications, when multiple
applications concurrently execute on shared system resources.
Our approach identifies application data rate patterns at run-
time, builds profiles of the execution times of the applications,
and estimates what is the effect of bursts on the performance of
the applications which are co-located on the same nodes with
the bursty ones. Hence, calculating the expected load, enables
us to predict whether there is a need to react upon the onset of
a burst so as to meet the QoS constraints of the applications.
We envision this approach as a valuable tool for the efficient
management of the system, that executes complementary to
the exhaustive burst management techniques and triggers them
only if necessary, since it has a lower processing cost and is
more effective in cases where a feasible load will be achieved
shortly after the bursts occur.

We summarize our contributions below:

• We present a prediction-based approach, that identi-
fies application data patterns dynamically, based on



the historical applications executions. It uses mea-
surements of the computational and communication
elapsed times and predicts whether there is a need to
react on bursty situations so that the applications meet
their end-to-end timeliness and rate demands.

• We provide a formulation to estimate the execution
times of the applications in the distributed stream
processing system, based on the rate patterns of the
applications.

• We integrate our proposed approach in our distributed
stream processing system Synergy [1]. We have run
extensive experiments over PlanetLab [6] to validate
our approach. Our experimental results illustrate that
our approach effectively meets application real-time
demands, is practical and depicts good performance.

II. SYSTEM ARCHITECTURE AND MODEL

A. The Synergy System

In this section we give a brief description of Synergy [1],
our distributed stream processing system, where we have
implemented our approach. Synergy is a wide-area stream
processing middleware. It comprises a set of distributed nodes,
connected via virtual links, so that the execution of distributed
stream processing applications is supported, and the systems
resources are efficiently managed. Synergy is built over the
Pastry network [7], as an overlay, and runs on Planetlab [6];
it utilizes the Pastry location and routing protocols to register
and discover the available application components and streams
in a scalable manner.

Each Synergy node consists of the following main modules:
(i) A discovery module that identifies the available applica-
tion components and data streams in the system. Synergy
leverages the capabilities of the Pastry overlay network for
registering and discovering available components and streams
in a decentralized manner. In our current prototype we have
implemented a keyword-based discovery service, on top of the
Pastry distributed hash table (DHT). This allows us to register
and discover components by hashing keywords instead of
the component IDs themselves, and thus decouple component
placement from their discovery. ii) A routing module is re-
sponsible to route data streams and protocol messages between
nodes. iii) A monitoring module that builds resource utiliza-
tion profiles (cpu load, network bandwidth) and maintains
application latency measurements. iv) A composition module
that implements a fully distributed composition protocol that
selects and instantiates application components. v) An appli-
cation module that implements the application logic. We have
implemented two applications in our system: real-time traffic
using the Berkeley Mobile Millennium dataset [8] and stream
encryption. vi) A replica placement module that determines
the replication and placement of component replicas on the
Synergy nodes in order to maximize application availability.
vii) A scheduling module that implements various scheduling
algorithms on the Synergy nodes (we currently implement
FIFO, Earliest Deadline First and Low Level Scheduling). viii)
A burst management module, that attempts to dynamically
determine the rate allocation to react to bursts. ix) We extend
Synergy with a Prediction module that estimates application

Fig. 1. Our system architecture.

execution times by considering the application data patterns.
Figure 1 shows the Synergy architecture.

B. System Model

In Synergy, we model the distributed stream processing
applications as application graphs where the nodes in a graph
represent the services (processing functions), invoked by the
application. The instantiation of a service on a node is called
a component; each service can be instantiated at several nodes
in the system and can be invoked by multiple applications.
Every component operates on individual chunks of stream
data, called Application Data Units (ADU), where the size
of each data unit depends on the type of the application.
The data units are composed from a set of measured values,
such as < timestamp, latitude, longitude, speed > that we
used in our traffic monitoring application or < timestamp,
latitude, longitude, accelerometer values, microphone samples
> that can be used for earthquake monitoring. A distributed
stream processing application is executed collaboratively by
instantiating the appropriate components on the nodes of
Synergy. Every node that participates in the Synergy DSPS
is responsible to host several services.

The user submits a request for a set of q applications,
1 ≤ q ≤ Q to one of the nodes in the system. Each application
q is characterized by:

• The initial rate requirements Rq that represents the in-
put rate of the application data units. When submitting
a request, the user expects from Synergy to instantiate
the appropriate components to perform the required
processing for the applications, at their requested rates.

• A Deadlineq, a relative value, that represents the time
interval within which application q should complete
the execution of the data units end-to-end, at the
requested rate.

Upon reception of a data unit by a node, the data unit is
inserted at the queue of the scheduler, waiting to be processed.
The order by which the data units are going to be processed,
depends on the selected scheduling policy (in our experiments
we used FIFO).

The input rate Rq of each application q over time, is stored
by the Prediction module. Thus, Rq is used to build profiles of
the application rates. The application rate profiling is based on
the observation that the application rates tend to repeat over
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time periods. Thus, we take advantage of this repetition by
identifying the most frequent patterns for each time period.
Hence, the rate Rq of the application q is calculated through
these patterns as will be discussed in the following section. An
example of a pattern is illustrated in figure 2, obtained from a
traffic monitoring application in our stream processing system
(we discuss the traffic monitoring application we used in the
experimental evaluation section in detail).

Let C be the set of the deployed components in Synergy,
and the rate that each component c ∈ C receives, is denoted as
Rc. Every component’s rate is constrained by the input rate of
the application Rq that invokes the component, since the actual
rates depend on the selectivity of the components. Thus, we
can use the input rate Rq of the application q, that is extracted
from the pattern, to determine the rate Rc, for each component
in application q.

Each invoked component c in the Synergy stream process-
ing system is characterized by:

• Its resource requirements Uc(j) for each resource j it
uses, such as CPU or bandwidth.

• Its selectivity selc that represents the ratio of the
output to the input rate of the component.

Both the rate requirements and the selectivity of a component,
are characteristics of the service executed by the component.
These can be either provided by the user prior to the ap-
plication execution or can be acquired at run-time through
profiling [1]. Also, note that, the execution of a service can
be assigned to more than one components for a specific
application. In that case each component will be responsible
for a subset of the data that will be processed.

III. OUR PROPOSED APPROACH

A. Identifying the Pattern

In many of the stream processing applications we observe
that the input rates follow specific patterns [9], [10], [11]
over time periods. Let R be a set of records for a specific
application, where each record consists of a timestamp and the
respective input rate of the application. Let I = i1, i2, ..., im be
the set of every available input rate, defined as Rates. A rate-set
is a non-empty set of Rates and a sequence s is a set of rate-
sets ordered according to their timestamp, as < s1 s2 ... sn >,
where sj , j ∈ 1...n, is a rate-set. For instance, if an application

achieved rates “45, 40, 38”, the respective sequence can be
described as: s1 =< (45), (40), (38) >.

A sequence S′ =< s′1 s′2 ... s′n > is a subsequence of
another sequence S =< s1 s2 ... sm >, denoted S′ � S, if
there exist integers i1 < i2 < ...ij ... < in such that s′1 ⊆ si1,
s′2 ⊆ si2, ... s′n ⊆ sin. For example the sequence s2 =<
(45), (38) > is a subsequence of s1, described as s2 � s1
since (45) ⊆ (45) and (38) ⊆ (38).

All the application rates, from the same application, for
a specific time window, are grouped together, sorted in an
increasing order and denoted as a data sequence. A data
sequence contains a sequence S if S is a subsequence of
the data sequence. Our goal is to define the data sequences
which are repeated frequently. Hence, we need to identify
the sequences that contain more than a predefined amount
of subsequences, that is denoted as a sequential pattern, also
called frequent sequence. A few solutions exist in the literature
for the problem of sequential pattern mining [9], [10], [11].

We follow the technique proposed in [9] to identify the
sequential patterns, because it uses a novel data structure
to incrementally maintain frequent sequential patterns and
a fast pruning strategy. Moreover, it enables users to issue
requests for frequent sequences over an arbitrary time in-
terval, at any time. This approach uses a tree structure for
inserting the sequences and the key idea is to maintain only
the maximal subsequences for each time window into the
tree. Thus, the search space is reduced when comparing and
pruning sequences by maintaining only a minimal number of
sequences needed to answer queries. Every new sequence is
either inserted to an existing valuation, if it belongs or extends
an existing sequence, or can be inserted as a new valuation
if it is not a subsequence of the existing ones. Finally, the
sequential patterns can be identified rapidly from the maximal
subsequences for each time window. Nevertheless, any solution
to this problem can be plugged in to our system.

Our approach takes advantage of the sequential patterns to
predict the forthcoming rates of the applications. Thus, we can
identify the sequential patterns for each time window that we
are interested in, by analyzing the sequences that correspond
to that window. For example, if we want to identify the most
frequent sequences per hour of the day, we should create
the sequences that contain the rates of the application for
each individual hourly time period, (i.e. 2.00am-3.00am), that
can be obtained from historical measurements. The window
is typically determined by the system developer since it
depends on the characteristics of the individual applications.
For instance, we may need to identify the sequential pattern
for each individual minute of the day if the workload is highly
unstable, or for every hour that corresponds on a specific day
of the week, as the rates may change among the days of the
week. After identifying the most frequent sequence we can
predict the forthcoming input rates of each application for
the time window that we investigate. Thus, for each timepoint
t ∈ window we define the corresponding Rq that represents
the respective rate for application q, that can be extracted from
the sequential pattern, to estimate the future incoming traffic.

Computing the sequential patterns online, when a burst
occurs can be computational costly, depending on the selected
solution, and should be avoided when the system is congested.



Thus, we compute them during time periods where the system
is underutilized, to reduce the overhead.

B. Estimating Execution Times

Once we have identified the most frequent patterns, we use
them to determine if the the estimated forthcoming rates can be
sustained by the system, even after the burst. Thus, we develop
a formulation based on the system’s resource constraints.

The relation between the input and the output rates of a
component, is defined by the selectivity of the component.
The selectivity selc of a component c represents the average
ratio of the number of output data units to the number of
input data units of c and depends on the service run by the
component. Thus, the input rate of each component depends
on the selectivity and the input rate of the previous component
in the application graph which is represented as:

Rc+1 = selc ∗Rc ∀c ∈ C (1)

Our objective is to determine whether the rates of the com-
ponents invoked by the applications in Synergy satisfy the
deadline requirements of the applications and the resource
constraints, even after the burst. The constraints that we need
to satisfy are the following:

End-to-End Time Constraint: The first constraint is de-
veloped to ensure that the applications meet their end-to-
end deadlines. Every application q should execute within its
Deadlineq, meaning that the sum of the computation times
and the corresponding communication times of all components
invoked by application q (denoted as end-to-end execution
time) should be less than the Deadlineq. This can be expressed
as follows:

ExecT imeq ≤ Deadlineq (2)

where:

ExecT imeq = maxpath(
∑
c∈q

Compc(Rc) ∗ (
1

Pc
)

+
∑
c∈q

Commc→c+1(Rc) ∗ (
1

Lc
)) (3)

where maxpath is used in the case that the application is repre-
sented as a graph with multiple paths, so that the application’s
end-to-end execution time is the maximum path latency. In
the above equation, Compi(Rc) represents the mean execu-
tion time required for component c to execute at rate Rc,
obtained through profiling techniques, and Commc→c+1(Rc)
represents the corresponding mean communication time among
components c and c+ 1. Pc denotes the CPU share on the
local processor for the execution of component c, while Lc

corresponds to the corresponding share on the communication
link for c. The end-to-end execution time, in the type of
applications that we consider, is mainly attributed to the
execution times of the components and the communication
times are negligible.

Several works have shown that there is a linear relationship
among the execution time and the data rate[4] [12] [13],
meaning that the execution time can be expressed as a linear
function of the input data rate of the component. This can be

expressed as: Compc(Rc) = Cc ∗Rc, where Cc represents the
computation time of component c per data unit. Similarly, we
express the communication time Commc→c+1(Rc) as a linear
function of the component’s input data rate.

Resource Constraint: All components on a processor are
competing for available CPU resources. Thus, we need to
ensure that the rates allocated to each component multiplied by
the CPU share required to process each ADU must be smaller
than the fraction of the available resources. For each node we
denote:

∑
c∈n

Rc ∗ CPUc ≤ 1 ∀n ∈ Nodes (4)

where CPUc represents the average percentage of CPU, for
component c to process one ADU, within Deadlineq.

C. The Prediction Algorithm

Our algorithm takes advantage of the predicted application
patterns, discussed in the previous section, to investigate the
need of reaction under burstiness. Thus, we need to verify
whether the predicted rates of the applications that participate
in the application graph of the bursty application, will satisfy
the QoS constraints of the applications. Our experience has
shown that the workload in the Distributed Stream Processing
Systems varies. Moreover, the rates of a component affect
through queueing multiple components. Thus, we aim to
estimate if the burst experienced by an application is going to
affect other applications that are co-located on the same nodes,
keeping in mind that the rates can change over time for all
the components. Hence, we use the rate patterns to determine
whether the end-to-end execution times of the applications are
going to meet their deadline constraints for a time window
after the occurrence of a burst.

Our algorithm is triggered by the monitoring module of
Synergy that identifies the burst, this typically occurs when
the application missed its deadline. Thus, whenever the algo-
rithm is triggered, the Prediction component is initiated. The
Prediction component estimates the forthcoming rates based
on the applications’ patterns. Thus, for each application that is
co-hosted with the nodes of the bursty application, it extracts
the most frequent pattern, as discussed in section IIIA, that
provides a sequence S =< s1 s2 ... sk > for the time window
of the burst. Since the sequence arrives in order based on the
timestamp we can assign each input data rate from the pattern
to the input data rate Rq that we predict, for each timepoint
that belongs in that window, t ∈ window. Estimating the
application input rates Rq from their sequential pattern enables
us to compute the components rates Rc based on the selectivity,
as described above, since the input rate refers to the source
component of the application. The Prediction component also
requests from every component that belongs in the application
graph of the bursty application to provide their Compc, CPUc,
Commc→c+1, Pc, Lc, selc and Deadlineq, so as to be able
to verify if the predicted rates would satisfy the system.

We select a time window, denoted as time interval, to
verify the effect of the burst to the execution times of the
components. The time interval is valid from the timepoint
when the burst occurred until the time interval expires. The



length of the interval depends on the type of the bursts that
we need to address and the criticality of the applications, and
so it should be decided by the system developer with respect
to the hosted applications and the expected bursts.

Afterwards, we estimate the effect of the burst to the
execution times of the applications by checking the estimated
rates of the components, Rc, for each timepoint t within
the time interval that we investigate and their respective
measurements (Compc, Commc→c+1, etc.), on the constraint
formulations 3, 4 that we developed. We claim that the bursty
application’s rates can not be predicted, since it depicts an
unexpected behavior. However, we can predict the rates for
every other application, that share the same nodes with the
bursty one.

Hence, if the constraints are satisfied in every examined
timepoint selected, the applications can still meet the deadlines
under burstiness, and we can conclude that there is no need to
address the burst. However, if we compute that the forthcoming
rates would lead to an infeasible solution for the constraints,
that is, the applications will likely miss their deadlines, then we
need to react in order to address the burst so as we maximize
the probability that the deadlines of the applications are met,
by triggering the burst management component. Additionally,
we should trigger it when the set of the sequential patterns
is incomplete for the affected applications, due to insufficient
historical data. The steps of our algorithm are summarized
in Algorithm 1. Note that, when multiple application graphs
experience bursts, we run the prediction algorithm for each
graph separately.

Algorithm 1 Prediction Algorithm
Define the applications Appsq that share the same nodes
with the components of the bursty application
For each component c that belongs in application q, ∀q ∈
Appsq request: Compc, CPUc, Commc→c+1, Pc, Lc, selc,
Deadlineq
Request the sequential patterns for every q, ∀q ∈ Appsq
for (Each timepoint t selected within time interval) do

Define the input rate Rq for all the applications q, ∀q ∈
Appsq, using their most frequent pattern
Verify if the constraints are satisfied with the predicted
input rates Rc, where the components rates are defined
from their selectivity
if (Constraints are not satisfied) then

Initiate the burst management component to react to
the burst and Exit

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have implemented our technique over the Synergy mid-
dleware [1] and tested it on PlanetLab [6]. Our implementation
is written in Java6 with approximately 13K lines of code. The
experimental evaluation focuses on the following parameters:
(i) Behavior of our Approach, (ii) Application Rates, (iii)
Throughput, and (iv) Overhead. We compare our prediction
approach with our Dynamic Allocation technique [4], that
was introduced on the previous sections, to illustrate the benefit
of our Prediction technique. However these approaches should
work in concert, since the Dynamic Allocation should be

triggered from the Prediction component whenever it identifies
an infeasible rate allocation, to adjust the rates.

Traffic Monitoring Application: The experimental eval-
uation scenario we used was a traffic monitoring application
where our goal was to identify congested areas in the Interstate
880 in California in real-time. We used Berkeley’s Mobile
Millennium Dataset [8], which includes real time traffic data
taken from GPS-enabled phones. That dataset consists of data
taken from 77 cars for the period between 10:00am and 6:00pm
on the Feb 8th 2008. Each application data unit (ADU) in
the dataset includes information of the form: <time, latitude,
longitude, speed and carID> .

The application scenario was implemented with 4 main
components: (1) A selection component that receives ADUs
and defines the geographic region of the cars and computes
each car’s trajectory based on its previous location. (2) A
projection component receives and updates the new data and
projects the 50 more recent ADUs based on geographic region
and trajectory information. (3) The third component computes
the average speed for the projected ADUs to estimate the
speed in the selected region. (4) The fourth component receives
this data to extract the traffic result map.

Patterns: For our experiments we use 2 types of patterns,
as shown in figures 3, 4, to investigate our prediction algorithm
under different scenarios. In every experiment we initiate 3
applications that follow the same pattern, for the input rate of
their source components, while initiating a fourth component at
the same time that depicts a bursty behavior, as shown in figure
5. In both experiments we have estimated that the assigned
rates will eventually render to feasible scenarios. Note that,
for the units in the figures, Rate is denoted as the amount
of processed ADUs per timepoint, where the Timepoint is
approximately the same with the Deadline.

B. Experiments using Pattern 1

In the first set of experiments we present and evaluate the
operation of our approach when the first three applications
follow the first pattern, while the fourth one follows the bursty
pattern. We also compare the benefit of our technique to our
Dynamic Allocation technique. The applications are injected
into the system with a difference of a second and their Deadline
is set to 2 seconds. The experiment lasts for 5 minutes.

Prediction Rates. Figure 6 shows the rates of the applications
using our Prediction approach that were processed within the
Deadline. As the figure illustrates, when the rates start to
increase, the applications become unable to keep up with their
defined rates. We should state that each node in PlanetLab has
a different processing capability and workload during the ex-
periments. This is the reason we notice that some applications
achieve higher rates than others when the nodes are congested.
Thus, when the burst occurs most of the applications achieve a
lower than the desired rate and especially Application 4, which
is the bursty one. However, our Prediction algorithm estimates
that the rates of the non-bursty applications are going to be
adjusted shortly to a feasible rate, based on the application
pattern. Thus, after the 60th timepoint where the rates are
adjusted, every application except from the bursty one achieve
their rate targets successfully. Although, Application 4 cannot
achieve the maximum rate at all times, this is due to the
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unstable workload of the PlanetLab system. Then, the same
behavior is being illustrated as the pattern is repeated.

Dynamic Allocation Rates. Figure 7 shows the rates of the
applications using the Dynamic Allocation technique. As can
be observed, using Dynamic Allocation we are able to identify
the optimal rates for the current system configuration upon
the onset of a burst, and so, the figure has fewer fluctuations
since the rates are being adjusted to a feasible solution. Thus,
after the burst has been injected after the 40th timepoint the
Dynamic Allocation technique estimates the rates that would
result on a stable system and assigns them. However, when
the rates later decrease, due to the pattern, the system has
already stabilized and so there is no need to re-adjust the rates,
although this could lead to higher throughput. In addition,
when the applications re-increase their rates, as the pattern
dictates, the Dynamic Allocation algorithm is triggered and
readjusts the system as before.

Throughput. Figure 8 illustrates the total throughput achieved
in the system for both techniques, and for each application
separately. As can be seen, the Prediction algorithm achieves
a higher throughput, with 6486 ADUs compared to the 6086
ADUs of the Dynamic Allocation algorithm. This is basically
due to the fact that the Dynamic Allocation has a lower
throughput on the interval when the applications decrease their
rates, since the bursty application can achieve higher rates
in that period. On the other hand, the Prediction technique
achieves that rate since it has identified the feasibility of that
interval.

Delay. In figure 9 we can observe the average time needed
for each algorithm to provide its solution. The Prediction
algorithm took less than the half time to determine the feasi-
bility of the forthcoming rates, since the Dynamic Allocation
approach has to converge to a feasible solution, while the

Prediction algorithm only verifies the feasibility of the solution.
Moreover, an increased amount of components would raise that
difference, due to the algorithms complexity. The Dynamic
Allocation’s delay is important since it implies queueing for
the congested components and it further increases the problem
until the rates are reassigned. On the other hand if the Predic-
tion algorithm decides that there is no forthcoming feasible
solution, it has to trigger the Dynamic Allocation algorithm
and the outcome will be further delayed.

C. Experiments using Pattern 2

In the second set of experiments we evaluate the operation
of our algorithm with the second pattern to better illustrate its
behavior. The injection of the applications follows the same
order as in the first set and the system configuration remains
the same.

Prediction Rates. Figure 10 presents the rates of the applica-
tions over time using the Prediction approach. As the figure
illustrates, the workload becomes unstable at the timepoint
where the applications increase their rate to 15 and the burst is
injected, and so the applications are able to process less ADUs
than the target within the Deadline. However, our prediction
algorithm is able to define that the workload is going to
be stabilized shortly, and thus there is no need for reaction.
Hence, after the rates are decreased due to the pattern all the
applications achieve their target rates, except from the bursty
one, for the same reason that we discussed above in pattern 1.

Dynamic Allocation Rates. Figure 11 shows the respective
rates of the applications using the Dynamic Allocation tech-
nique. As can be observed, the Dynamic Allocation algorithm
identifies again the optimal rates to obtain a stable rate for the
current system configuration when the burst occurs, and so, the
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rate of the bursty application depicts only a few fluctuations,
after the rates are being adjusted to a feasible solution.

Throughput. Figure 12 presents the total throughput of the
ADUs that was achieved for each technique. The Prediction
algorithm manages to achieve a higher throughput, as in the
first pattern, with 6851 ADUs compared to the 6762 ADUs
of the Dynamic Allocation algorithm. In this experiment the
difference among the two techniques is smaller, which is
attributed to the pyramid pattern. However, the advantage of
the Prediction technique to achieve a higher throughput is due
to its ability to identify the feasibility of the forthcoming rates
rapidly, so that the rates can be maintained, when the Dynamic
Allocation approach decreases them.

Delay. In figure 13 we can observe the average time needed
for the execution of each algorithm on runtime. As can be
observed the Prediction algorithm needs only 588 seconds
compared to the 1289 seconds of the Dynamic Allocation and
as we discussed above that difference would rise if we injected
more components.

Discussion. From the above experiments we illustrate that the
Prediction algorithm can benefit a system, when bursts occur, if
the patterns of the application rates can be estimated. We have
shown that the Prediction algorithm is executed faster than the
burst management component and when there is no need for
reaction it achieves a higher throughput. Thus, we conclude
that the Prediction algorithm should be used in systems with
transient bursts to define the need for reaction so as to increase
the throughput and avoid the computational cost of the burst
management component.

V. RELATED WORK

Distributed stream processing systems have recently be-
come extremely popular for processing high-throughput, low-

latency data streams. A number of stream processing systems
have emerged in the literature (including our own work on the
Synergy middleware) [1], [14], [15]. The research in this area
is very rich and many papers have been published on detailed
aspects of the technology such as data models, operators and
query languages, resource management, scheduling, admission
control policies, load shedding, composition and placement
algorithms, etc. Although, these research efforts have focused
on high performance stream processing engines, our work
studies the problem QoS management using pattern-based
prediction under bursty conditions.

Recent efforts have studied the problem of balancing
the overloads in a DSPS. In our previous work [4], [5],
we have proposed the BARRE and RADAR algorithms for
accommodating unpredictable bursts of the data streams in
DSPS. BARRE proactively computes data stream allocations to
identify all feasible allocations and uses them at runtime upon
the onset of a burst. RADAR on the other hand uses only online
distributed rate adaptation techniques in order to accommodate
bursts. Authors in [16] also use an offline computation phase
for the optimization. Their goal is to optimize the rates in
distributed real-time systems. They transform the discrete rate
adaptation problem to an mp-MILP problem to reduce the
online computation. Lumezanu et al in [17], model the latency
assignment problem for real-time distributed applications as
a utility maximization problem. In ROD [13] operators are
assigned on processing nodes in such a way that the maximum
possible input rate is supported for each operator. Authors
in [2] consider the problem of how to avoid overloads in
distributed stream processing systems though load shedding.
They propose a solution based on re-configuring and dropping
data units at times of excessive load. The reconfiguration is
based on redundant computations upon composition. In [18]
they also deal with bursts using a nonprobabilistic model.



They suggest that data streams that enter the system should
satisfy the burstiness constraint in order to reduce network
delays. All of these approaches either need to know the
complete system configuration in advance, to compute the
feasible rate allocations or they need to time and computational
resources to estimate the rate allocations when a burst occurs.
On the contrary, our Prediction approach is different since
it provides a lightweight solution to predict the forthcoming
system workload in advance, to avoid the resource overhead of
estimating the optimal rate allocations when this is possible.

The most similar problem to our approach is the work
in [12]. The authors propose a QoS management scheme
that features query workload estimators, that predicts the
query workload using execution time profiling and adjusts
the query QoS levels, using sampling, based on online query
execution time prediction. However, their workload prediction
is based on the current input rate of the system, while in
our approach we develop a prediction scheme that is based
on sequential patterns to define the input rate beforehand.
Authors in [19] present a predictive resource management
algorithm to achieve the timeliness requirements of periodic
tasks. Their algorithm monitors the timeliness behavior of
the tasks to detect the application workload changes, that
may affect task timeliness, to perform resource allocation,
through adaptation mechanisms such as replication of task
processes or subtasks. Their technique determines the subtasks
that need to be replicated along with the processor resources
that are required for executing the replicas to achieve the
task timeliness requirements, using a predictive technique that
forecasts task timeliness and incrementally adds replicas until
the forecasted timeliness are acceptable. On the other hand
our technique aims to predict the forthcoming workload in
advance, so as to meet the task timeliness requirements.

Several techniques can be found in the literature for iden-
tifying patterns. Our approach is able to adopt any of the
techniques for mining sequential patterns to define the patterns
of the applications data rates which is fundamental part on
our approach. Authors in [9] propose their approach, called
SPEED, to identify sequential patterns in a data stream. The
originality of their technique is based on the used data structure
to maintain frequent sequential patterns which is coupled with
a fast pruning strategy. Ayres et al in [10] suggest depth-first
search strategy that integrates a depth-first traversal of the
search space with effective pruning mechanisms for mining
sequential patterns. Their approach is especially efficient when
the sequential patterns are very long. In [11], they propose an
algorithm, called Moment, to identify and maintain all closed
frequent itemsets in a sliding window, that contains the most
recent samples in a data stream. In the Moment algorithm,
they use an in-memory data structure, the closed enumeration
tree to record all closed frequent itemsets in the current sliding
window. In addition, the closed enumeration tree also monitors
the itemsets that form the boundary between closed frequent
itemsets and the rest of the itemsets.

VI. CONCLUSIONS

In this paper we have presented our approach to predict
the capability of the Distributed Stream Processing System to
meet the QoS requirements of the applications under bursty
situations. Our approach builds application data rate patterns at

run-time and predicts the effect of the burst on the performance
of the applications, to identify whether the system needs to
compensate delays experienced by the application components
due to sudden bursts of load. Our detailed experimental results
over the Synergy middleware illustrate that our approach is
practical, depicts good performance and has low overhead.
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