
Travel Time Estimation in Real-Time using Buses as Speed Probes

Dimitrios Tomaras, Ioannis Boutsis, Vana Kalogeraki
Department of Informatics

Athens University of Economics and Business
Email: {tomaras,mpoutsis,vana}@aueb.gr

Abstract—Travel time estimation is a strategically important
service in urban environments for personalized and eco-
friendly route planning optimization, congestion avoidance,
ridesharing and taxi dispatching. However, storing and re-
trieving traffic data in specific spatiotemporal regions is not an
easy task as the data generated by these systems are typically
very large and dynamic. In this paper we propose an efficient
and scalable solution for real-time travel time estimation of
trajectories. In our system buses are used as speed probes to
obtain real-time traffic data information and spatio-temporal
trajectories are stored in a dynamic indexing system optimized
for efficiently retrieving spatiotemporal data in real-time. Our
experimental evaluation illustrates the efficiency and scalability
of our approach.

1. Introduction

Recently we have observed the proliferation of
“location-based systems” as a consequence of the ubiqui-
tousness of GPS sensors in location-aware smartphone de-
vices, car navigation systems, etc. Such devices have made it
possible to monitor and track the movement of pedestrians,
cyclists, motorists and humans in public transport in real-
time and has enabled us to identify interesting events.

The availability of such information has led towards
developing a wide range of applications which are charac-
terized as “location based services”. Such services provide
user-centric information that may include estimating traffic
conditions, locating nearby stores, local weather, etc. For
instance, in EcoTour [3] the authors exploit GPS and histor-
ical data for proposing environmental friendly routes, while
in StartTrack Next Generation [7] they exploit series of
GPS traces to support ridesharing and personalized driving
direction services.

A fundamental challenge in such services is that they
rely on the use, storage and real-time analysis of tremen-
dous amounts of data. Such data typically describe user
movement patterns or other spatiotemporal instances that are
dynamically generated from multiple types of participating
sensors, and the queries typically require real-time informa-
tion and fast responses. Thus, maintaining and processing
queries on data that change rapidly over time is a difficult
task.

Several schemes have been proposed that focus on main-
taining geo-located information efficiently, most of which

depend on tree structures. One of the most popular methods,
R-trees [6], aims to assign each geo-located point in the
respective spatial container but they do not consider the
time dimension. Other approaches, such as STR-trees [2]
consider spatiotemporal instances but they do not take into
account the sequence of the points produced by the same
sensor, that reflect its trajectory. Finally, Trajectory Bundle
Trees (TB-Trees) [9] take into account the sequence of
spatiotemporal instances, but they are not optimized for real-
time spatiotemporal queries.

In this paper we propose an efficient and scalable so-
lution for real-time travel time estimation of trajectories,
using buses as speed probes. We develop TRavEl Estimation
Trajectory (sTREET), a system optimized for efficiently
estimating travel time by considering spatiotemporal infor-
mation retrieved from buses. sTREET indexes lines of buses
using the line they travel as a key. It stores information about
the current road network conditions. By keeping a secondary
index, sTREET manages to optimize the time needed for
processing spatiotemporal queries.

Our main contributions are summarized as follows:

• We develop sTREET a novel tree-based structure
that is designed to index large and dynamic spa-
tiotemporal trajectories.

• sTREET is optimized for real-time spatiotemporal
queries and can be used to compute travel times
by exploiting real-time information produced from
buses.

• sTREET takes advantage of a secondary index that
significantly reduces the search space for our defined
spatiotemporal queries by an order of magnitude.

• Our experimental evaluation shows that sTREET
is practical, efficient and can effectively retrieve
spatiotemporal data produced in real-time to meet
application demands.

2. System Model and Overview

In this section we present our system model and we
introduce our tree structure that handles spatiotemporal tra-
jectories.

2.1. Smart City Application

Smart cities use digital technology devices embedded
across all city functions, to provide important services for
the citizens and businesses on several aspects including
traffic management, environment monitoring, housekeeping
information, etc. Dublin is a smart city [8] that that takes ad-
vantage of such devices for managing traffic congestions and
incidents. Traffic management is controlled by the Dublin
City Council, a local authority that develops, maintains and
manages the city’s road network for the benefit of pedestri-
ans, cyclists, motorists and public service and commercial
vehicles.

In Dublin, the main mode of public transport, in terms
of passenger numbers and coverage, is by bus. The main
bus operator has a fleet of over a thousand buses, most of
which pass through the city center. For instance, at Trinity
College there are almost 400 buses during the rush hour
(08:00-09:00) in both directions. Since 2008, these buses
are fitted with an Automatic Vehicle Location (AVL) system
that provides real-time GPS traces; these are collected with
a 30-second interval and are available in real-time. Such
traces can provide significant information to estimate traffic
congestion and calculate alternative routes. However, pro-
cessing such data in real-time for all interested commuters
is a challenging process due to the size of the data produced.
In this work we focus on optimizing such queries so as to
execute them efficiently and in real-time.

2.2. System Model

Definition 1 Traffic Monitoring System. We consider a
traffic monitoring system where buses are equipped with
Automatic Vehicle Location systems that are used to gen-
erate real-time traffic data reporting GPS location, direction
and speed. During a trip, the bus periodically reports its
current position, destination and speed; these information
are then utilized to compute road conditions as well as
speed limits on the streets. Each bus is considered as a
moving sensor i that generates j records rij of the follow-
ing form: rij :〈latij , lonij , timeij , directionij , lineIdij ,
vehicleJourneyIdij , vehicleIdij , delayij〉, where latik,
lonik define the spatial location of the bus, in terms of
latitude and longitude, timeij represents the unix timestamp
when the record was produced, directionij shows the ge-
ographical direction of the bus, lineIdij is the identifier of
the line, vehicleJourneyIdij defines the identifier of the
pattern of the journey, and vehicleIdij denotes the identifier
of the specific bus.
Definition 2 Trajectory. A bus trajectory trajk is a sequence
of spatiotemporal time-ordered records rij with the same
lineIdij , vehicleIdij and vehicleJourneyIdij .
Definition 3 Temporal Estimation. For each bus route,
we assume a spatial decomposition of the route into non-
overlapping segments sege and we estimate the time needed
to reach every segment sege, denoted as te. Thus, for a
given route we extract all trajectories trajk with the same
lineIdij and vehicleJourneyIdij and we add them to the

list Route. For each record rij ∈ trajk,∀trajk ∈ Route
we subtract the value of timeij with the time point when
the trajectory of rij has started: timeij = timeij −
min (timemn∀rmn ∈ trajk); this enables us to produce tra-
jectories with a starting time point of zero. Then, for each
spatial segment sege we estimate the time te needed to reach
that segment using the mean value of the records in that area
te =

∑
timeij
|rij | ,∀rij ∈ Route && latij , lonij ∈ sege. This

provides us a temporal estimation of a specific bus route to
reach a spatial segment.
Definition 4 Traffic Delay. delayij represents the difference
of the estimated time to reach a segment (using Definition
3) compared to the actual time that the bus reaches. Hence,
the delayij for each new record rij is computed by the
estimated time te to reach the spatial segment sege, where
rij resides, compared to the time that has passed since the
initiation of the trajectory, defined as:

delayij = te − (timeij −min (timemn∀rmn ∈ trajk))

Definition 5 Minimum Bounding Rectangle (MBR). Given
a set of points P we define as a Minimum Bounding
Rectangle (MBR) the minimul rectangular area that contains
all points P .
Definition 6 MBR Limits. We define as MBR limits the
spatial points, p1 : (lat1, lon1), p2 : (lat2, lon2) that reside
at the bottom left and the top right upper corner respectively
of the MBR and thus bound the area included.
Definition 7 Spatiotemporal Delay Query. We define as
Spatiotemporal Query Q(Sq, T (tk, tl)) the query that com-
putes the average delay within a spatial area Sq represented
as an MBR, within a time window T (tk, tl) we are interested
in. The query has the following form:

Q(Sq, T (tk, tl)) =

∑
delayij
|rij |

,∀rij s.t. (latij , lonij) ∈ Sq

&& timeij ∈ [tk, tl]

2.3. Overview

In this section we discuss the design of the sTREET tree
structure. sTREET is optimized for real-time spatiotemporal
queries that provide aggregated results over varying spatial
regions within a time interval. The focus is on city streets
where buses are used as speed probes, thus the range queries
could also consider specific bus lines. For this reason,
sTREET is primarily organized according to a spatial index,
with temporal predicates, and then it is further divided based
on the bus lines that reside in the spatiotemporal regions.

The basic storage layout of sTREET is presented in
figure 1. As can be observed the root node preserves the
spatiotemporal bounds along with the amount of total points
preserved in the structure. At the second layer the nodes
preserve their identifier, the spatial and temporal range for
which they are responsible along with other information
that includes the list of the node’s children (set L), the
amount of entries, and the parent node. We also provide
an index for this layer that allow us to reduce the search

Figure 1. sTREET Tree.

space by several orders of magnitude as we show in our
experiments, since we avoid sequential searches over the
leaf nodes. The expansion procedure of our tree follows
the principles of those in Trajectory Bundle Trees, in other
words, expanding from left to right and up. This means that
we can have several layers between the root node and the
second layer(the layer above the leafs). Finally we divide
these nodes based on the bus lines indexed at the nodes.
Thus each leaf preserves the information retrieved from the
buses in a specific line and also maintains the following
information: the aggregated average delay computed based
on all records in the leaf, the total entries in the leaf, the
MBR limits of the points, the temporal limits of the included
points and the identifiers of the line, the node and the parent
of the node.

3. The sTREET Data Structure

The sTREET data structure is optimized to efficiently
store and index spatio-temporal bus data so that by tracking
bus locations and analyzing historical data, we can easily
identify traffic delays and congestion. Using a set of opti-
mizations, our data structure is capable of achieving minimal
latency when looking up spatiotemporal data and answering
real-time queries.

3.1. sTREET: TRavEl Estimation Trajectory Tree-
Design

There has been a large body of work on indexing spatio-
temporal data, where each of them focuses on a different
aspect of the problem proposing a corresponding solution
[9]. Perhaps the closest schemes to our approach are the
R-trees and the STR-trees. The indices have similarities
in organizing data into leaves, with similar insertion and
splitting strategies, but with different focus on the data
stored. In our approach, we make use of Trajectory Bundle
trees [9] which are derived from R-trees [6]. They are
designed to index trajectories over geographic regions, using
rectangular boxes, known as minimum round boxes (MRB).
They index the users’ trajectories by storing the trajectory

segments. In every leaf node, M segments (which is the
fanout) are stored by preserving the constraint of trajectory
discrimination. Our approach takes advantage of the benefits
of TB-trees and we also optimize the tree in order to be able
to retrieve the results under time constraints.

We developed a novel data structure the goal of which is
to store trajectories of bus lines while offering a large range
of spatiotemporal and navigational queries to perform. The
data structure relaxes the constraint of the continuity of tra-
jectories as presented in traditional TB-trees, but keeps the
unique reference of a node to just one trajectory. Moreover,
the data structure provides us with historical data about a
specific line and its buses that can be derived from time
window limits stored.

3.1.1. Tree Data Structure. All nodes of the data structure
despite the layer they belong to, share some characteristics.
Every node is stored in the hashmap with 〈Node ID, Node
Object Reference〉 as key-value pair. We use hashmaps
because it is known they have fast retrieval time and this
is what we exploit in both our indexing scheme and the
query processing. In the following subsections we present
the design principles of our data structure.

Internal Nodes. The internal nodes of our data structure
keep the same philosophy and design of those that were
presented in R-trees [9]. They keep the fanout policy that
triggers the splitting process, and for that reason they have a
maximum capacity of leaf nodes they can hold underneath.
Moreover, they store the minimum and the maximum values
of GPS points probed by the buses and also the corre-
sponding minimum and the maximum timestamps. These
characteristics are used for denoting the coverage area in
terms of both geospatial and time window parameters. The
current number of inserted leafs and information of the
node’s level are also kept. Upon insertion of a new bus
entry, the process of creating a new leaf, a “splitting” process
which is similar to the one of the traditional TB-trees, will be
triggered. It will update all the necessary information (MRR
limits and timestamp limits) up to the root of the tree.

Secondary Layer. In our work, we give an advantage
to the internal nodes belonging to the second layer (i.e.,

nodes on the next level above the leafs). We keep a reference
of these nodes to a secondary index (a hashmap), in order
to have fast access for our geospatial and time windows
queries. With this option, we reduce the search range for
any query that has to do with geospatial and time window
constraints and in our experimental evaluation we illustrate
the benefits of this approach.

Leaf Nodes. In our indexing approach, leaf nodes are
used to store all the necessary information about the buses
that travel along a specific line with a specific line Id. The
number of buses (i.e., the number of different combinations
of 〈lineIdij , vehicleJourneyIdij , vehicleIdij〉) has the
same fanout as in internal nodes(for the children nodes
respectively). Despite the fact that in traditional TB-trees,
leaf nodes of the same trajectory are connected through a
double linked list on the leaf level, and thus, one could
iterate over the whole trajectory just using the pointers from
one to another, in our approach we do not keep such list.
Nodes belonging to the same line id can be easily found by
just accessing the hashmap, as our goal is to achieve better
results through the fetch procedure. Each leaf node has a
field referring to the node ID which is unique. Moreover
another field referring to the lineIdij is also used to apply
the trajectory discrimination presented in TB-trees(in our
case we have line discrimination). In the case that there is no
available space to store a bus record, our method returns an
error code that will trigger the process of adding a new leaf
node, with a splitting strategy following if needed. Finally,
each leaf node keeps the MBR and the timestamp limits of
buses underneath.

3.1.2. Insertion and Querying in sTREET. Pro-
cessing Queries. To process a spatiotemporal query
Q(Sq, T (tk, tl)), sTREET first performs a lookup on the
index to retrieve all nodes in the second layer of the tree
that satisfy the spatiotemporal constraints of a given query
Q(Sq, T (tk, tl)). The system then uses these nodes to fetch
information from the leaf nodes belonging to nodes of
the second layer. Taking into consideration that hashmaps
provide fast retrieval times for any object, we benefit from
this feature as we don’t have to search linearly all leaf nodes,
but use only nodes of the second level. This produces a set
of records rij that satisfy the query and which are used
to produce the final query results. To produce our results,
we iterate only among the retrieved records and get the
necessary relevant information for the given query, such as
the Spatiotemporal Delay in the area bounded by a specific
retrieved leaf node.

Handling Insertions. Each record rij is processed by
sTREET that traverses through the nodes based on the
spatiotemporal characteristics of rij (latij , lonij , timeij)
and based on its lineIdij and can be either inserted to
an existing leaf when it is not full or we might need to
instantiate a new leaf to insert the record. Moreover, we
update the information preserved in the parent nodes of the
leaf to be consistent with the newly inserted node and we
also update our index. The details of insertion into nodes and

updating the indexes are described in detail in the following
subsection.

Insertion - Splitting Algorithm. Our data structure
inherits some principles from the insertion algorithm of the
traditional TB-trees. In our case we do not want to descend
the whole tree, until we find the last level of inner nodes.
We refer to the nodes using the lineIdij as the key and we
find the first available node. If such node does not exist,
we create it and then we check if there is need to trigger
the splitting process. If such a node exists, then we check
whether the combination 〈lineIdij , vehicleJourneyIdij ,
vehicleIdij〉 also exists. If so, we update the bus element
timestamp limits, the mbr limits, the current delay and we
also increase the number of points indexed by this node.
Else, we create a new bus element and we update the node’s
limits appropriately. We still take into consideration the
rightmost policy. In other words, in order to add a new leaf
node, we are searching for the rightmost available position in
the parent node. In case that such position is not available,
we find the rightmost parent node (node that belongs to
the second layer), we add the leaf node and update the
spatiotemporal limits appropriately. Following this insertion
rule, one can observe that our tree structure will expand
from left to right and from bottom to upper, in all levels,
and splitting processes will be triggered as needed.

3.2. Travel Time Estimation

In this section, we present how we exploit bus travel
information stored in the sTREET data structure to infer
travel times on a road network in real-time. Given a route
A → B described with a set of non-overlapping MBRs
Sq, that a user aims to travel within a time window [tk, tl].
Our goal is to derive the travel time needed for route
A → B, within the specified time interval using the in-
formation provided by the buses that cover these segments.
The amount of time tq needed to pass a regional space Sq

can be computed using historical data. So the total time
needed to travel between two points A, B is computed
as the sum from all segments Sq of the estimated time
needed to cross the segment tq added with the average
delay in location Sq within time [tk, tl], extracted from the
real-time bus information from query Q(Sq, T (tk, tl)), as:∑

Sq∈A→B(tq +Q(Sq, T (tk, tl)))

4. Experiment Evaluation

In this section we present the experimental setup and
performance results of our approach.

4.1. Experimental Setup

We have implemented the sTREET data structure using
Java 1.8. Our results were produced on a quad-core Pentium
3.40Ghz with 16GB of RAM and a 1TB 7200RPM drive,
running Windows 7. For every experiment we conducted, we
configured a Java Virtual Machine with a maximum of 6 gi-
gabytes of memory. The dataset upon which the experiments

Figure 2. Average insert time as a function of the
percentage of data size and MaxEntries.

Figure 3. Searched nodes as a function of the per-
centage of data size for a large window query. Figure 4. Nodes that satisfy the constraints.

Figure 5. Percentage of searched nodes vs created
nodes.

Figure 6. Query time as a function of the percentage
of data size for Variable MBR sizes.

Figure 7. Query time for different MaxNodeEntries.

were conducted was a dataset from the INSIGHT project1
providing Dublin Bus GPS data from Dublin City Council
that contains more than 30 million GPS points [1]. In order
to be able to illustrate the benefits of our indexing scheme,
we have set and collected a set of performance metrics: 1)
Average insert Time, 2) Tree Expansion, 3) Nodes Accessed
and 4) Query Time. Our presented results are averages from
3 runs.

4.2. Experimental Results

4.2.1. Average Insertion Time experiment. The purpose
of this experiment is to illustrate the scalability of our data
structure. It was conducted by adding 27 days of bus data
from our dataset, and we measured the insertion time needed
in regard to the MaxNodeEntries(fanout) parameter
and the size of data. In figure 2 we can observe that the
Average insert time behavior when the percentage of data
grows until day 27. For 50% of data inserted the time is
slightly above 0.003 msec whereas for 100% of data inserted
it may need 0.003-0.006 msec. We can also observe from
the figure that the fanout parameter significantly affects the
average insertion time.

4.2.2. Tree Expansion and Node Accesses. Once the data
were indexed in the sTREET, we performed another exper-
iment based on the Spatiotemporal Query Q(Sq, T (tk, tl))
with Sq being the whole region indexed and tk, tl, were set
as the minimum and maximum timestamp, so as to measure
the amount of second level nodes searched for a given

1. INSIGHT - http://www.insight-ict.eu/

query and how many leaf nodes satisfied our constraints.
Figure 3 shows that we needed to search up to 5 nodes
for 10% of data where we needed to search between 8-
26 nodes for 100% of the dataset. In figure 4 we can see
how many leaf nodes satisfy our constraints. For a 10% of
data under 500 nodes satisfy our constraints whereas for
the full dataset 1300 to 2600 nodes satisfy our constraints.
Thus, we state that the search space is minimal and reduced
by orders of magnitude, compared to the naive approach
of searching all leaf nodes to detect the ones that satisfy
the criteria. Another interesting metric is the ratio of nodes
being searched towards those created. Figure 5 illustrates the
percentage of nodes to be searched towards those created.
For 10% of data, this percentage varies from 0.005% to
0.011%, while for the full dataset it varies from 0.007% to
0.010%. The figure shows that this ratio remains constant
despite the number of nodes created.

4.2.3. Query Time experiment. For this set of experiments,
we performed queries of the form Qk(Sq, Ti,j) where we
variate the Sq and the Ttk,tl.

Variable MBR experiment. We also measured the
performance of our data structure by adjusting the MBR
limits while keeping the same time window limits. For
this experiment, we computed the time needed to per-
form the query taking as a fixed parameter the parameter
MaxNodeEntries = 150. The MBR Limits used were a)
a small one, an MBR Limit that only one second level node
could store, b) a medium one, an MBR Limit that takes
into account more than one second level layer nodes, and
finally c) a large one, an MBR Limit that would fetch the
results from the whole region underneath. Figure 6 shows

that for 10% of data we may need from 0.7-1.2msec to
fetch the final result whereas for the full dataset we need
1.8-2.7msec. Thus, despite the variation of the MBR limits,
the amount of time needed to answer a query is very small.

Time window experiment. We also conducted an exper-
iment to illustrate the behavior of our data structure when the
parameter that changes is the time window. We performed
our Spatiotemporal Average Delay query with variable
time window limits. We set the Sq as the entire area indexed,
and we use a a time window pair list Ls〈Ti,j〉, that contains
the time window pairs to query our data structure. The list
Ls〈Ti,j〉 we used in our experiment contained all week
days and a time interval of (i) 8-11 am for the Morning
and (ii) a time interval of 2-6 pm for the Afternoon. In
figure 7 we compare the amount of time needed for both
intervals in connection with MaxNodeEntries. As can
be observed, the query time for averaging delays from a
whole week takes 3-11msec and it strongly depends on the
MaxNodeEntries parameter we choose.

5. Related Work

The problem of indexing spatiotemporal data is not new
and several algorithms have been proposed in the literature.
In our previous work [4] we have developed an enhanced
version of trajectory bundle trees. It was designed to store
trajectory segments derived from taxis, in a similar approach
with trajectory bundle trees, but by using different types of
keys apart from trajectoryId, such as the userId of each
driver. However, in this work, we have extended our ap-
proach in order to optimize the retrieval process and reduce
the information kept in each node. Designed to support real-
time queries, we have enhanced our tree structure by adding
a secondary index that minimizes the search space and the
time needed to access the nodes.

In [9], the Trajectory Bundle trees data structure was
presented. The basic idea is that they keep segments of
trajectories with spatiotemporal similarities between trajec-
tories and preserve trajectory discrimination. However, they
cannot preserve information about the current delays on
the road network as in our approach, and furthermore they
would need a larger number of processing steps to get the
Spatiotemporal Average Delay. Other approaches such
as TrajStore [5] use a quad-tree in order to index points and
trajectories. They segment and index trajectory segment that
lie spatiotemporaly near blocks of disk, whereas in our ap-
proach we organize our index in memory. However, we are
able to index trajectories and their points as data comes in
streams. In [10] the authors propose an algebraical approach
using space decomposition to estimate travel time, whereas
our work focuses on a minimal latency data structure to
accomplish the same goal. In [11] they propose a graph
approach in order to estimate the optimal cost route but
they do not use any kind of index in order to support other
types of queries.

6. Conclusions

In this paper we have presented sTREET, our novel
tree-based structure that is designed to index large and
dynamic spatiotemporal trajectories. sTREET is optimized
to use for travel time estimation using real-time information
produced from buses equipped with automatic vehicle lo-
cation systems. Our detailed experimental results show that
sTREET is practical, can effectively retrieve spatiotemporal
data produced in real-time, meet application demands, and
is highly efficient due to its minimal response times.

Acknowledgments

This research has been co-financed by the European
Union (European Social Fund ESF) and Greek national
funds through the Operational Program Education and Life-
long Learning of the National Strategic Reference Frame-
work (NSRF) - Research Funding Program: Thalis-DISFER,
Aristeia-MMD, Aristeia-INCEPTION Investing in knowl-
edge society through the European Social Fund, the FP7
INSIGHT project and the ERC IDEAS NGHCS project.

References

[1] Dublin bus data. http://dublinked.com/datastore/datasets/dataset-
304.php.

[2] P. K. Agarwal and C. M. Procopiuc. Advances in indexing for mobile
objects. IEEE Data Eng. Bull., 25(2):25–34, 2002.

[3] O. Andersen, C. S. Jensen, K. Torp, and B. Yang. Ecotour: reducing
the environmental footprint of vehicles using eco-routes. In MDM,
volume 1, pages 338–340, Milan, Italy, June 2013.

[4] I. Boutsis, D. Tomaras, and V. Kalogeraki. Towards real-time emer-
gency response using crowdsourcing. In PETRA, Rhodes, Greece,
May 2014.

[5] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive
storage system for very large trajectory data sets. In ICDE, pages
109–120, Long Beach, CA, USA, March 2010.

[6] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD Conference, pages 47–57, 1984.

[7] M. Haridasan, I. Mohomed, D. Terry, C. A. Thekkath, and L. Zhang.
Startrack next generation: A scalable infrastructure for track-based
applications. In OSDI, pages 409–422, Vancouver, Canada, October
2010.

[8] D. Kinane, F. Schnitzler, S. Mannor, T. Liebig, K. Morik, J. Marecek,
B. Gorman, N. Zygouras, Y. Katakis, V. Kalogeraki, and D. Gunop-
ulos. Intelligent synthesis and real-time response using massive
streaming of heterogeneous data (insight) and its anticipated effect
on intelligent transport systems (its) in dublin city, ireland. In ITS,
Dresden, Germany, November 2014.

[9] D. Pfoser, C. S. Jensen, Y. Theodoridis, et al. Novel approaches to
the indexing of moving object trajectories. In VLDB, pages 395–406,
Cairo, Egypt, September 2000.

[10] Y. Wang, Y. Zheng, and Y. Xue. Travel time estimation of a path
using sparse trajectories. In SIGKDD, New York, NY, August 2014.

[11] B. Yang, C. Guo, C. S. Jensen, M. Kaul, and S. Shang. Multi-
cost optimal route planning under time-varying uncertainty. In ICDE,
Chicago, IL, USA, April 2014.

