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Abstract—In the recent years we are experiencing the rapid
growth of crowdsourcing systems, in which “human workers”
are enlisted to perform tasks more effectively than computers,
and get compensated for the work they provide. The com-
mon belief is that the wisdom of the “human crowd” can
greatly complement many computer tasks which are assigned
to machines. A significant challenge facing these systems is
determining the most efficient allocation of tasks to workers
to achieve successful completion of the tasks under real-time
constraints. This paper presents REACT, a crowdsourcing
system that seeks to address this challenge and proposes
algorithms that aim to stimulate user participation and handle
dynamic task assignment and execution in the crowdsourcing
system. The goal is to determine the most appropriate workers
to assign incoming tasks, in such a way so that the real-
time demands are met and high quality results are returned.
We empirically evaluate our approach and show that REACT
meets the requested real-time demands, achieves good accuracy,
is efficient, and improves the amount of successful tasks that
meet their deadlines up to 61% compared to traditional
approaches like AMT.

Keywords-distributed systems; crowdsourcing; real-time

I. INTRODUCTION

In the recent years we have witnessed the proliferation of
crowdsourcing marketplaces that are increasingly being em-
ployed to solve computational problems that require human
intelligence. Crowdsourcing refers to a distributed problem-
solving process that involves outsourcing tasks to a network
of people, known as the crowd [1]. The basic practice in
these systems is to leverage the strengths and diversity of
the human crowd to perform tasks more effectively than
computers, for a small payment. Crowdsourcing systems
provide access to a diverse, on-demand, scalable workforce
of human workers capable of performing specific, small
tasks in return for a payment. Several prominent companies
have already recognized the opportunities presented in such
mass collaboration systems and have developed a business
model [2]. Thus, a number of commercial crowdsourcing
systems have been developed, including Amazon’s Mechan-
ical Turk(AMT) [3], CrowdFlower [4], CloudCrowd [5],
microWorkers [6] etc. Recently, systems such as Gigwalk[7]
and FieldAgent[8], aim to incorporate crowdsourcing in
time-sensitive tasks such as traffic monitoring, location-
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aware surveys, points-of-interest suggestions, real-time en-
tertainment recommendations, price checks, etc.

One significant shortcoming facing these systems, is that,
despite the reward given to the users, crowdsourcing attracts
a diverse pool of workers from different locations around
the world that earn money by mainly executing random
tasks at variable scheduling speeds. The reason is two-fold:
First, while a few systems have the capability to request
feedback before providing compensation, the vast majority
of the crowdsourcing systems gives compensation via an
automated payment method without checking the quality of
the results. As a consequence, low-quality results or the
existence of malicious workers can severely degrade the
quality of the outcome, leading in poor system performance.
Second, existing crowdsourcing systems have no provision
for real-time response (i.e., their goal instead is to optimize
throughput rather than be responsive). We consider this a
fundamental challenge for the wider adoption of the systems.
However, real-time execution is a challenging problem due
to highly dynamic crowd, as well as resource constraints
and fluctuations in network quality and channel capacity,
especially for crowdsourcing tasks over resource constrained
environments such as mobile environments. This makes it
extremely difficult to estimate execution times to provide
real-time support.

The task assignment problem is closely related to sev-
eral problems that have been studied in the literature. An
offline version of the problem can be solved using linear
programming or by the Hungarian algorithm [9]. However,
these approaches have high computational overhead which
makes them inappropriate for use in dynamic systems. The
online version of the problem can be considered as an online
bipartite matching problem, similar to the online adwords
problem [10], or the related display ad allocation problem
[11]. Our problem is closely related to the task assignment
problem in distributed systems, where static and dynamic
techniques have been proposed mainly for load balancing,
and for which several works exist in the literature (including
earlier work from our group) [12], [13], [14], [15]. However,
crowdsourcing systems differ from traditional task assign-
ment techniques in three important ways: (1) They do not
aim to balance the workload to meet machine performance



metrics. They rather aim to assign a highly variable workload
to human workers that depict a wide variety of skill levels,
which is often unknown in advance. (2) We cannot assume
that workers are persistent and that are willing to work on
subsequent tasks, since, even the most reliable workers may
have short connectivity cycles and may have particular skills
for specific tasks. (3) The human factor makes the execution
time of the tasks uncertain, which makes it difficult to be
estimated in advance. Thus, crowdsourcing systems require
online solutions in order to define the best matching among
tasks and workers that would be able to solve the tasks under
time constraints. The algorithm must operate in batches,
during which an appropriate assignment of tasks to the most
relevant workers both in terms of skills and time constraints
is performed, for all tasks submitted during the batch.

In this paper we present REACT (REAIl-time schEduling
for Crowd-based Tasks), the middleware that we have de-
veloped that aims to exploit the wisdom of the crowd for
scheduling tasks to workers under time constraints. REACT
combines crowdsourcing with scheduling techniques to im-
prove the quality of the results and satisfy user real-time
response requirements. Our work targets applications with
tight deadlines, such as CrowdSearch [16], and is the first
paper that we know of that deals with this problem. In order
to address these two challenges we develop a task scheduling
approach where the incoming tasks are matched to the most
appropriate human workers, using a Bipartite matching that
is executed dynamically at runtime. Our scheduling approach
can be used to find the most appropriate worker for each
task based on multiple attributes such as location, reputation,
profile, etc. In addition, we use a probabilistic scheme in
order to estimate whether the worker will be able to complete
the task before the deadline or the task should be reassigned
to another worker that will be able to fulfil that demand.

We summarize our contributions below:

e We present REACT, our middleware that uses estimates
of worker profiles (end-to-end completion times, feed-
back accuracy, etc.) to achieve a dynamic assignment
of the incoming tasks to the most appropriate workers
available, based on worker profiles, skills and real-time
computational capabilities.

e We model the dynamic task assignment problem as an
online Weighted Bipartite Graph Matching (WBGM)
problem and provide an online algorithm that aims to
maximize the probability of selecting the most appro-
priate workers dynamically, while meeting the real-time
constraints of the tasks.

e Our approach uses a probabilistic model to estimate
the execution times of the tasks and compute the
probability of meeting their real-time demands.

e We carried out a case study on CrowdFlower to un-
derstand the behavior of the human workers in terms
of response times, accuracy etc, on real-time location
based tasks such as the traffic monitoring application.

e We performed extensive experiments on PlanetLab [17]
to validate our approach. Our experimental results illus-
trate that our approach is practical, effectively schedules
crowdsourcing tasks by selecting the most appropriate
workers and it manages a reduction of upto 45% on the
execution time of the tasks, while it meets the real-time
demands of 61% more tasks compared to the traditional
approaches like AMT.

II. BACKGROUND

We first provide a brief introduction to crowdsourcing.
Crowdsourcing systems constitute a marketplace for tasks,
where humans (called the Requesters) define tasks, and
Crowdworkers, consisting of experts, small businesses and
human users, execute them in exchange for a small monetary
reward. Crowdsourcing is more effective for tasks that
cannot be easily automated, or tasks that humans can do
much more effectively than computers. For example, humans
can easily tag a photograph with a description based on its
content, or when events such as concerts occur in a city, hu-
mans can provide up-to-date local traffic conditions around
the event areas. Crowdsourcing could also be combined with
mechanisms that are traditionally computer-based, in order
to further improve their efficiency. In a typical crowsourcing
system, human requesters are asked to provide a rating from
Excellent to Bad (e.g., Bad=1, Poor=2, Fair=3, Good=4,
Excellent=5) to grade the quality of the workers. Several
commercial crowdsourcing platforms today have developed
a business model around crowdsourcing such as AMT [3],
CrowdFlower [4], CloudCrowd [5], microWorkers [6] etc.

Traditional crowdsourcing architectures, such as Ama-
zon’s Mechanical Turk, are not designed for optimizing
the task assignment process. First, typical crowdsourcing
systems do not provide a task assignment policy; they
let the workers make their own decisions about which
tasks to execute. The majority of the current crowdsourcing
platforms announce received tasks at their portal and then
the workers choose among the assorted mass of tasks the
ones that they would like to process. Since the assignment
is initiated by the worker, it hardly allows the system to
have an influence upon assignments such as determining the
suitability of involved workers. Thus, the task selection is
highly motivated only by worker preferences and not by their
skills, location, efficiency or reputation. The tasks submitted
to the platform also vary significantly in their characteristics.
As multiple workers could be suitable for a task, efficient
crowdsourcing solutions should assign the task to the most
suitable worker that would be willing to execute the task.

Another challenge facing crowdsourcing systems is that
they do not provide support for meeting real-time response
demands, which is fundamental for the real-time applications
that we consider. Current systems enable the requesters to
define expiration times for the tasks in the form of soft
deadlines; these deadlines represent the available time that



each worker receives in order to complete the task. If the
deadline expires while being executed, the task returns to the
tasks repository as unassigned. However, although requesters
are able to define an expiration time for a task, there is
no mechanism in place to make sure that the tasks will be
executed before they expire.

Crowdsourcing tasks can be executed by workers through
their personal devices such as desktop machines, mobile
devices or cellphones. The techniques we propose are used
to support heterogeneous workers in the crowdsourcing
platform, but we consider that they are all entitled to receive
the same reward although the resource cost is higher for the
mobile users, e.g., due to battery consumption, possible 3G
costs, etc.

Finally, the monetary payment in these systems is rela-
tively low. Based on [18], 90% of the tasks pay less than
0.10$. Thus, we conclude that one worker has to complete
a lot of tasks in order to receive a decent payment. On the
other hand, requesters are able to have their tasks completed
and receive answers at a relatively low cost.

III. SYSTEM ARCHITECTURE AND MODEL
A. Crowdsourcing Architecture

The REACT system, as shown in Figure 1, comprises
a number of users, acting either as task Requesters, by
allocating tasks to the system, or/and as Crowd workers
by receiving tasks to process, and a number of servers,
responsible to receive tasks from the Requester nodes and
matching them to the most appropriate Workers. We as-
sume a spatial decomposition of the geographic area into a
number of non-overlapping regions, similar to that of [19],
where each region is assigned to a REACT server that is
responsible for the matching in the region. The organization
of the area into regions can be done with respect to the
size of the geographic area or the number of tasks in the
region, possibly defining several tiers at different levels of
granularity, ranging from small local areas at the lowest tier,
to the entire network area at the highest tier; this allows the
system to collect task information from all the users in a
scalable manner. The region size can be defined based on
the application characteristics. Our experimental evaluation
has shown that an average of 500-1000 workers per region
depicts good performance, since the selection of the workers
to assign 1000 tasks takes almost 10 seconds.

The REACT Server is implemented with the following
four main components that work in concert. These are : i)
a Profiling Component, ii) a Task Management Component,
iii) a Scheduling Component and iv) a Dynamic Assignment
Component.

The Profiling Component is responsible to keep track of
the workers’ information and statistics. It maintains for every
worker (identified by worker_id), information about his
geographical_location and current availability_status.
Furthermore, it keeps statistics about every task that has
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Figure 1. REACT architecture.

been assigned to the worker, such as completion_time,
feedback_accuracy (defined by the total amount of pos-
itive and negative feedbacks that requesters have provided
upon the completion of their task by the current worker),
task_category, etc. This makes it easy to compute the
accuracy of each worker for the different types of tasks, pref-
erence on specific task categories, etc. Our model follows
closely the AMT model, where parameters such as skills and
interests are not considered for the workers.

Every task that a Requester loads to our platform is
received by the Task Management Component, which is
responsible to provide information about all the available
tasks in the REACT platform. Examples of such information
is the task’s remaining_time until it expires, if the task is
currently assigned to a worker and what is the id of that
worker, the teme_elapsed since it was assigned, etc.

The Scheduling Component is responsible to match the
unassigned tasks (which are provided by the Task Man-
agement component) to the Available Workers (that are
maintained at the Profiling Component). This component
creates a graph as will be discussed in the following sections,
in order to perform a matching based on the tasks’ needs
and the workers’ capabilities. Subsequently, the Scheduling
Component assigns the tasks to the workers.

The Dynamic Assignment Component is a component
that estimates for each assigned task the possibility of
meeting its real-time demands, based only on the worker’s
profile. For each worker, we estimate the probability of
meeting the task real-time demands, using a Cumulative
Distribution Function (CDF) based on the worker’s previous
performance data. The purpose of this component is to
remove an assigned task from the specific worker, when it
seems infeasible to meet the task’s real-time demands, so as
to enable the Scheduling Component to find a better match.

B. Profiling

Our system comprises a set of workers denoted as
worker; € W, that register to our system in order to receive
task assignments. Tasks are being inserted to the system,
by the Requesters. Each task; € T is associated in the
system with a number of information as < id;, latitude;,



longitude;, deadline;, reward;, description; >, that we
use in the location based application in our experiments.
Thus, every task receives a unique id so as to be tracked,
the coordinates of the location that the task involves, the time
interval in which the task should be completed, the corre-
sponding reward and a task description. The task description,
provided by the requester, describes what information needs
to be provided by a worker;. Examples of task descriptions
are: “Is road A highly congested?”, “How much time do
I need to go from location B to location C?”, etc. Each
worker; is compensated by a monetary reward;, defined
by the requester, when he/she completes task;.

In our model each task; is associated with a soft real-time
deadline;, that represents the time interval within which the
task; should be completed in the system. We assume a soft
real-time system, where our goal is to maximize the number
of deadlines met and missing a deadline is not catastrophic
for the system. Moreover the metric TimeT oDeadline;;
represents the time interval from the timepoint of the as-
signment of task; to worker; until the deadline; expires.
We also denote as t;; the time that has elapsed since the
task; was assigned to worker; and ExecT'ime;; as the total
time from the assignment of the task; to worker; until its
completion.

C. Weighted Bipartite Graph

Crowdsourcing assigns tasks to an unknown, large and
dynamic group of workers rather than a fixed, stable number
of nodes, such as in traditional distributed environments, e.g.
clusters. Our REACT middleware is responsible to select
the worker who will process each task, so that the real-time
demands of the task are met.

We note that, in our approach, a worker is assigned with
one task at a time. This way we have an up-to-date view of
workers and resources. On the contrary, assigning a series
of tasks to a worker would be more complex since addi-
tional constraints (synergies and correlations among tasks)
should be taken into consideration. Nevertheless, solving the
problem for a single task has merit independently.

Our task assignment model is represented by a weighted
bipartite graph. A bipartite graph G = (U, V, E) is a graph
whose vertices can be divided into two disjoint sets U and V'
such that each edge (u;,v;) € E connects a vertex u; € U
with one v; € V. If each edge in graph G has an associated
weight w;; , the graph G is called a weighted bipartite graph.
We use the weighted bipartite graph to represent all the
possible assignments between the workers and the tasks.

In our approach, each vertex in U represents a worker;
who is available to execute tasks. Vertices in V' represent all
tasks task; to be processed by workers. The respective edges
(worker;,task;) € E, represent a possible assignment
between a task and a worker. When a task; is matched
to several workers, then the graph contains multiple edges
for task;; each edge corresponding to a different worker.

Each edge is associated with a weight, computed via
function F(worker;, task;). Thus, we define w;; =
F(worker;,task;) for every edge among a worker and a
task. This function may depend on several factors such as the
worker’s previous executing times compared to the deadline,
the accuracy of the worker’s executed tasks, the worker’s
location, etc. We present the definition of the weight function
that we used in our experiments in section 4.

Each task; is associated with a geographical region
so the task set changes only when new tasks arrive or
executing tasks finish processing. Our Dynamic Assignment
Component is able to deal with changes in the worker set
as well, by reassigning the tasks when workers abandon the
system and new workers can receive unassigned tasks.

Maximum Weighted Bipartite Matching. In the bipar-
tite graph G = (U,V, E), a matching M of graph G is a
subset of E such that no two edges in M share a common
vertex. If the graph G is a weighted bipartite graph, the
maximum weighted bipartite matching is a matching whose
sum of the weights of the edges is maximum. Hence, in
our model the maximum weighted bipartite matching can
be formulated as follows:

Mazimize E

(worker;,task;)EE
U]
subject to qu <LVji=1,..,|V|

=1

Wij * Tij

v
D wi <LVi=1,., U]
j=1

x5 € {0,1}

where z;; is 1 denotes that edge (worker;,task;) is an
edge in the maximum weighted bipartite matching. and with
w;; representing the weight for the respective edge among
worker; and task;.

Our goal is to solve the above maximization problem,
that is, to select the edges, that would provide the highest
> (workers task,;)c £ Wij * Tij subject to the constraints, in
order to schedule the execution of the tasks to the appropriate
worker nodes. The maximization function is computed as the
sum of the weights w;; that exist in the matching solution.
The constraints are formulated so that each worker would
not be connected with more than one task, and each task
would not be connected with more than one worker. This
process is done by the Scheduling Component, as shown in
Figure 2.

Task Rewards. One important aspect in the crowdsourc-
ing systems for the selection of the tasks by the workers is
the reward; of task;. Typically, users select either tasks
with a low monetary compensation that need a little time to
be processed or tasks with a higher reward that take a lot of
time. Although we do not use pricing in our implementation,
our approach is flexible enough and could be extended so
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Figure 2. Weighted Bipartite Graph Matching process.

that pricing issues are considered. In order to achieve that
we would only have to add a task reward range on the user’s
profile (that could be changed based on the user’s current
needs and mood), which could be exploited when we create
the edges among tasks and workers. Thus, if the reward;
of task; does not meet the reward range demands of the
worker; the respective (worker;,task;) edge would not
be instantiated, (worker;,task;) ¢ E.

IV. OUR APPROACH

In this section we present and discuss our techniques for
task assignment approach.

A. Task Assignment

Our technique aims to define the most appropriate workers
for each task. To accomplish that we propose a dynamic
assignment algorithm, whose purpose is to match each
task; that has been received in the recent time interval
and is reported by the Task Management Component as
unassigned, to the most appropriate worker;. This problem
is solved by our online Weighted Bipartite Graph Matching
algorithm. Our solution works in batches, which are initiated
periodically, or if the number of unassigned tasks has
exceeded a boundary.

Graph Construction. If we had a static environment with
specific workers and long-running tasks, we could assume
that the graph can be given to the system. However, in the
crowdsourcing systems we consider the environment can be
very dynamic, where the workers and the tasks depart and
arrive frequently and the respective graph changes accord-
ingly. Thus, in our approach the weighted bipartite graph is
constructed and maintained in real-time from the Scheduling
Component of each REACT Server, for the Server’s region.
This approach, reduces the size of the matching problem,
without affecting the output, since the server needs to keep
track only for the tasks that involve its region and the
workers that currently belong to its region. Each worker
is registered to the server related to the area where he
belongs, based on his geographical_location, provided to
the system, and each task is registered to the respective
server based on the task’s latitude; and longitude;.

Whenever a worker is available, the corresponding vertex
is added and vice versa. The same procedure is repeated for
each task; that is available to be assigned in the server’s
region. Moreover, when a task arrives we should also create

the corresponding edges with the workers. Each task; could
be connected to multiple worker;. In our system the choice
of whether to instantiate an edge among a task and a
worker or to prune the current edge, meaning that the
edge will not be inserted at all on the set of edges, is
based on the estimation of the probability that worker; will
process task; before deadline; expires. Hence, we define
the probability Pr(ExecTime;; < TimeToDeadline;;)€
[0,1] that represents that case and which can be easily
computed (as will be shown later). We only create edges
when this probability is above a specific application-defined
lower bound, which essentially represents when we stop
instantiating edges. Thus, when the Pr(Execlime;; <
TimeToDeadline;;) is greater than the threshold we in-
stantiate the edge and we assign the corresponding weight,
defined by F'(worker;, task;), otherwise we prune the edge.
Note that for the first z assignments of a new worker, we
instantiate the edges with all available tasks and we assign
the maximum value of F'(worker;,task;) to train him and
build the worker profiles (accuracy, execution times) based
on the executed tasks.

Weight function. In order to define the weights for
the edges among tasks and workers there are several
factors that need to be considered. The weight should
be decided based on the application’s goals. Thus, the
weight function may include real time variables (such as
the probability that the Deadline will not be exceeded by
the worker), the worker’s location, etc. In our approach,
since each server is responsible for a specific region,
it is expected that the selected worker would be in the
region that the task denotes. However, we could use their
geographical distance on the weight in order to get the
nearest worker for the specific task, similar to [20], as w;; =
distance(geographical_location;, [latitude;, longitude;]).
This is useful for location-based applications such as
congestion detection, since a worker who is physically
located on the requested location would provide accurate
results. Although there are several different weight functions
that can be employed, in the experimental evaluation, we
use the weight function that is based on the worker’s
“quality”, similar to [21]:

PositiveT asks;;
F(worker;, task;) = wi; = %FinishedTasks<]<
ij

ey

Z PositiveT asks;;
Z FinishedTasks;;
age of the positive feedbacks that worker; has received for
his completed tasks that belong in the same category with
task;, out of his total finished tasks in that category. This
information can be extracted from the worker’s profile. The
requester of the task gives a positive or negative feedback for
worker; that completed the task to denote the quality of the
result and this is recorded by the system. Hence, the weight
metric w;; represents the user accuracy for the specific task

The factor

€ [0, 1] represents the percent-



category. This choice was made since the users with high
accuracy in a particular task category are considered as
experts, and thus we should select these first rather than
considering low-accuracy workers. Moreover, we suggest
that low weighted edges could be pruned to reduce the
graph’s size since they would imply a task assignment with
worker of a low quality, which means that the worker is
either malicious or inappropriate for this type of task. Thus,
we choose a weight for the edges of the graph with the
goal of finding high-quality workers for the task and we
only create edges when the goal of the real-time demands
should be fulfilled. Nevertheless, we have seen [18] that
there are tasks that are being avoided even by high-accuracy
workers in the AMT due to small rewards. In such cases, low
accuracy workers could be selected to execute these tasks.

REACT Weighted Bipartite Graph Matching
(WBGM) Algorithm. The algorithm for selecting the
set of edges among tasks and workers in order to assign
the tasks has to be both effective and fast. Algorithms
that produce optimal results for the WBGM problem are
computational costly due to high complexity. Thus, we
propose an algorithm that produces both high-quality results
and also in a short time.

Our technique is based on states, where the selection of
a new state is either accepted or rejected compared to a
fitness function g(z) that we wish to maximize. Each state
represents a selection of edges for the matching problem.
Thus, in every iteration we alter that selection and decide
to accept the new selection, if this new state improves the
result of the problem.

Let = be the current search state, where x € {0,1}
describes the set of matchings (worker;,task;). z;; = 1
denotes a matching edge and x;; = O denotes that it has
not been selected. We iterate the following algorithm for a
predefined number of cycles c. The number of cycles can
be either small when our main purpose is the speed of the
algorithm, or large when we aim on maximizing the output
of the matching. This parameter plays a significant role both
to the optimality of the solution and to the execution time. In
our evaluation the cycles parameter has a predefined value,
however an adaptive cycles parameter based on the graph’s
order of magnitude could be selected. In each iteration,
we choose (worker;,task;) € E at random and flip z;;.
Thus, in the current state x, we develop a new search state
&’ = Tg, oy Ty Where a7 = 1 — 245, and @), = @gn,
if the edges (task,,workery) # (task;, worker;). After
developing a new state z’, we use a fitness function g to
decide whether to choose the new search state 2’ as the next
state or not. We use a fitness function g, where g(z) = 0
for the state  where two edges in the matching share a
common vertex, and g(z) = 3~ ker, et task; ev Tij * Wij
for the state x, that does not have two edges sharing the same
vertex. This fitness function g also guarantees the matching
is reasonable in each iteration. In the case that g(z') > g(z),

|E|

we accept 2. Else, if g(z’) = 0, then it means that we tried
to match two vertices and another edge was already matched
with one of the vertices, or two different edges were already
matched with each of the two vertices. Thus, if the new edge
has a higher weight than the old one(s) we remove the old
edge(s) and accept the new state. Else, we remove the new
edge. Finally in case where g(z') < g(x) we accept 2’ with
the probability e sz dpe(z) , where K is a constant, otherwise,
we return to x. The steps of our algorithm are summarized
in Algorithm 1.

Algorithm 1 REACT Weighted Bipartite Graph Matching
while (Loops < ¢) do
Choose (worker;, task;) € E at random and flip x;;
if (g(z") > g(x)) then
accept '
else if (g(z’) = 0) then
Define the weight wy; for every already matched
edge (workery,task;)’ € E for which £ = i or
=
if (wy; < w;; for each wy;) then
Remove (workery, task;) and accept z’
else if (g(2’) < g(x)) then
sample « frg)m (0,1)
if (a < e™ ") then
accept '

Time vs. Optimal result trade-off. Although our ap-
proach does not provide optimal results, it is able to define
a solution quickly. Our choice to use a technique to define
the best workers for each task quickly, is based both on
the size of the graph and on the real-time application
that we consider. Thus, the delay of defining the optimal
workers might result in the expiration of the tasks’ deadlines.
Moreover, we expect that the size of the graph in our system
will be large, with numerous workers and tasks and optimal
solutions for large graphs in WBGM need time that is
unacceptable for our real-time application. The benefit of
choosing such an approach is illustrated in the Experimental
Evaluation Section.

Worst-Case Complexity of the REACT WBGM. Our
approach runs for ¢ cycles. Choosing a random edge and
flipping it, only costs O(1). In every cycle the algorithm
computes the new g(z') that also costs O(1), by adding or
subtracting the edge’s weight or setting g(«’) = 0 if one of
the two vertices is marked as matched. It costs only O(1)
to verify if the new state is better than the previous one and
accept it. In the case where g(z’) = 0 we need to find the
matched edges that contain worker; or task; and define
their weights to make a decision about the new state. In
order to do that we need to consider all edges which takes
O(FE). Finally, the cost for the case g(z') < g(x), where we
select the state with a predefined probability is O(1). Thus,



the worst-case complexity of our algorithm is O(cE).

B. Estimating the execution time of the tasks

For each executing task; at a worker; node we need to be
able to estimate if the worker; will be able to successfully
accomplish the task given the real-time requirements of the
task. The basic idea is, that, because these systems depend on
the human factor, we may not be able to have an accurate
prediction for the execution time of the task beforehand.
For example, a worker might want to do other things in
parallel that extend the expected execution time or he/she
might even abandon the task completely without informing
the crowdsourcing system. However, it has been observed
that these systems follow a Power Law Distribution [22],
based on the analysis of Ipeirotis in [18]. That means that
the execution times of the tasks should cluster around a
typical value. We make use of that observation in order to
estimate the probability of a task being completed before its
deadline, using the CDF for the Power Law Distribution for
the current worker, which is based on its previous execution
times, provided by the Profiling Component.

Hence, for each timepoint ¢;; we need to com-
pute the probability Pr(t;; <  FEzecTime;; <
TimeToDeadline;;), using the CDF of the Power Law
Distribution. If this probability gets lower than a threshold
we should reassign the task to another worker. That scheme
takes advantage of the fact that the probabilities for these
distributions decrease rapidly after they exceed the typical
values. Thus, the remaining time can be enough for another
worker to accomplish the task before the deadline; expires.

Mathematically, a quantity x obeys a power law if it is
drawn from a probability distribution p(k) oc k~<, where
« is a constant parameter of the distribution known as
the exponent or scaling parameter. In order to define the
probability that we discussed above we need to use the
CDF of the power-law distributed variable, which we denote
P(k) and is defined as P(k) = Pr(K > k), where
K is the observed value. Thus, P(k) = [~ p(k')dk' =

—a+1
(+2-) “T Where ki > 0 must be a lower bound on

knLin

the power-law behavior. The value of o is computed as:
o =1+ 0[S Ing i)

In our approach the k; values represent the execution
times. Thus, we use the information stored at the worker’s %
profile to obtain the execution times Fxeclime;y, for each
task h that he has completed, in order to compute the prob-
ability Pr(TimeToDeadline;;) and thus the probability
that the FxecT'ime;; on worker; will meet the Deadline
of task;. The lower bound k,,;, is set as the worker’s
lowest measured execution time for a task. Similarly, we
compute the probability Pr(t;;) of the current execution
time ¢;; of task; on worker;, to be higher than the typical
execution times. Finally, we need to compute the intersection
of the possibility that the execution time would be less than

the deadline and higher than the current timepoint. This
probability is computed as:

Pr(t;; <EzecTime;; < TimeToDeadline;;) =
1 — (Pr(TimeToDeadline;;) + (1 — Pr(ti;))) (2)

Hence, we estimate the probability of a worker to finish
the execution of a task in the time interval, before the
deadline and after the current timepoint. If this probability
gets lower than a predefined threshold we should reassign
the task to another worker. For instance, in our experimental
evaluation we have set the threshold as 10%, meaning that
if the probability of a worker to complete a task before the
deadline is less than 10%, then the task should be reassigned.
This happens since we expect that the worker has either
abandoned or delayed the task by doing something else in
parallel, when this probability highly diminishes. Thus, if
we estimate that the task would not be completed in time
by the current worker it is essential to have it reassigned.
The probability that we used earlier, when constructing the
graph, Pr(ExecTime;; < TimeToDeadline;;), to decide
whether to instantiate the edge, can be computed as:

Pr(EzecTime;; <TimeToDeadline;;) =
1 — Pr(TimeToDeadline;;) 3)

V. EXPERIMENTAL EVALUATION
A. Experimental Setup

We have implemented our techniques over the REACT
middleware and tested it on the PlanetLab [17] testbed. Our
system was implemented in Javabu26 with approximately
2K lines of code.

The experimental evaluation focuses on the following
parameters: (i) WBGM efficiency, (ii) Quality of Results,
(iii) Deadline misses, (iv) Average Execution Time, (v)
Scalability.

B. Evaluation of the WBGM Matching

In this set of experiments we evaluate the performance
of our matching solution. We compare our own REACT
matching method with two other WBGM algorithms: (i) the
Metropolis Algorithm [23] and (ii) a Greedy algorithm.

Metropolis Algorithm: The basic idea of this algorithm
is to apply a Markov chain Monte Carlo method on the
maximum weighted bipartite graph matching problem. Their
solution, like our own, is based on the acceptance of a new
state and on the decision of whether the new state is better.
However, we consider the states differently and a major
difference among our algorithm and the Metropolis is that
they do not consider the case for g(z') = 0 at all. Moreover,
our goal is more than providing a matching algorithm but
also to meet real time constraints in an online system.

Greedy Algorithm: We also compare our algorithm with
a Greedy one, that produces high quality results since it



selects the greatest valued edge for every unassigned task
out of the available workers. Thus, the basic idea of the
Greedy matching is to select the edge (worker;, task;) for
any unassigned task; € V with the highest weight w;;, that
is subject to the constraints defined for the WBGM. The
complexity of such an approach is O(V E) since for every
task it needs to iterate through the edges and check its weight
with all of the available workers, to find the highest one.

Comparison Among the Algorithms: In the first set of
experiments we compare our REACT matching algorithm
against the Greedy and the Metropolis one. Firstly, we
initiate 1000 workers and we match them with a number
of tasks that range from 1 to 1000, to prove the benefits
of our algorithm. We use a full graph where all the tasks
are connected with edges with every worker, which is the
worst case scenario for the WBGM algorithms. We present
the outcome in Figures 3 and 4.

In Figure 3 we illustrate the execution time for the
assignment of the tasks. As can be observed, the Greedy
matching takes a lot of time to execute when the size of
the graph increases due to its complexity. Thus, for 1000
tasks it takes 99.7 seconds while the REACT and Metropolis
algorithm with 1000 cycles execute for 12 seconds and with
3000 cycles they both need 45 seconds.

Figure 4 illustrates the output for the function that we aim
to maximize. For the current experiment, we use weights on
the edges in the range between [0, 1] and thus the output
of our function for the optimal matching cannot exceed the
maximum number of tasks, due to the 1-to-1 selection. As
can be seen, the Greedy succeeds an almost optimal behavior
because we use a full graph and thus while there are a
lot of workers that have not been assigned with tasks, it
can find workers with weights on their joint edge that are
close to 1.0. However, the respective time for these results
is unacceptable for a real-time system, where we expect
that the size of the graph can be even larger. It is obvious
in this experiment, as the number of tasks increases, the
REACT algorithm cannot achieve the same performance.
This happens since the number of cycles that remains the
same, eventually becomes insufficient for the amount of
tasks and workers, and thus some of the tasks might not
be able to be assigned with a worker during the iterations.
Hence, both the Metropolis and the REACT algorithm need
to have the cycles adjusted carefully to maximize the benefit
of the trade-off among the time needed and the respective
output. However, it is important to observe that although
Metropolis and REACT algorithms needed almost the same
time to execute, for the same cycle parameter, the REACT
algorithm results on a higher output even with a third of the
cycles.

Discussion: In order to use the REACT and Metropolis
Matching algorithms efficiently, it is essential that a min-
imum number of unassigned tasks needs to be gathered
before executing the algorithm. Otherwise, the algorithm is

going to run through cycles without improving the matching
output and wasting resources. On the contrary, the Greedy
one can be either triggered for each unassigned task or wait
for a number of tasks. However, the REACT and Metropolis
algorithms are far less time expensive and the REACT
algorithm produces results with increased weight than the
Metropolis one at all times.

C. Evaluation of the REACT Approach

In the second set of experiments we demonstrate the
benefit of our REACT algorithm, in a crowdsourcing system.

Case Study. Although, we tried to obtain real workloads
from existing crowdsourcing platforms such as AMT, to use
them in our experiments, in the current setting the systems
do not allow us to control the task assignment.

Thus, we carried out a study on CrowdFlower, that
exploits the AMT platform, in order to understand their
behavior and determine the deadlines, response times and
accuracy to use in our system. The study was conducted
with the following use case. We injected crowdsourcing
tasks where the users were asked to estimate the traffic
in specific geographic regions, based on the Google maps
traffic layers. During our study we noticed the following:
although the first couple of results arrived in only a few
seconds, the remaining tasks could take up to 6 hours to
complete, which is unacceptable for real-time systems. We
used the observations and results from this case study in
order to define the values of the parameters in the remaining
experiment. We extracted the trust field from the results, to
determine the workers accuracy, and we computed that 70%
of the workers had a feedback that was more than 50%.
Moreover, 50% of the responses were received in less than
20 seconds, although our proposed time was 20 seconds, so
we concluded that this was a sufficient time for someone
to complete our task. However, the remaining of the users
might delay to process or to select the task, since they may
not be familiar with such a task, and thus the completion
time could take up to hours. Hence, we decided to set the
deadline for such a task among 60-120 seconds.

Experimental Setup. For the purposes of our experiments
we create a number of workers that receive tasks from the
system and process them among a time interval that is
randomly decided based on their profile and ranges from
a minimum to a maximum time. Although each worker re-
ceives a unique minimum and maximum time these times are
constrained among 1-20 seconds, as this was the proposed
time that we had set in our tasks in Crowdflower. However, a
worker might choose to delay or abandon the task randomly
with a probability of 50% and thus the executing time may
reach up to 130 seconds. Moreover, based on the case study,
each worker has a unique feedback € [0, 1] assigned with a
distribution where the 70% of the workers receive a feedback
that is above 0.50. Each task also receives a deadline from
60-120 seconds, since its production, that is in fact a tight
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Figure 3. Matching Times Comparison for 1000 workers.

deadline for such systems, to be able to satisfy applications
that need quick responses such as traffic information.

We compare our approach with the case where the
WBGM is being done with the Greedy matching and with a
Traditional approach. When we use the Greedy matching we
also use the online probabilistic model to reassign the tasks,
as in the REACT algorithm. However, in the traditional
approach we try to simulate the traditional non real-time
crowdsourcing systems, such as the AMT. Hence, we use
uniform matching for the assignment and the probabilistic
model that we developed is not being used. We have defined
the threshold of the probabilistic model to 10%. Thus if
the probability that the task will be processed before the
deadline from the currently assigned worker gets lower than
0.1 the task is being sent to the Scheduling Component to
be reassigned. In the REACT matching algorithm we have
set the number of cycles to 1000.

In order to conduct the experiment we consider only
one region server with 750 online workers. The system
receives tasks in a rate of 9.375 tasks/second that need to be
assigned to the workers and all of the matching algorithms
are triggered when the unassigned tasks (both the newly
arrived and the abandoned by the workers) are more than
10. The rate of the incoming tasks was selected to be higher
than the rate of the AMT [24], for each of our servers. We
should also note that in all the experiments, the reassignment
of the tasks based on the probabilistic model needs at least
3 completed tasks in the worker’s profile to be initiated.
Hence, the first 3 tasks in every worker are not going to be
reassigned so as to train the system about his performance.

Figure 5 presents the amount of tasks that were finished
before the deadline to the total amount of received tasks.
As can be observed the REACT algorithm approach has the
best behavior over the 3 techniques. As the figure shows, it
manages to process 6091 out of the 8371 tasks with a total
execution time that was lower than the deadline. Moreover,
the majority of the missed deadlines is observed before the
needed tasks for the system training have been completed,
since most of the deadlines where lost at the beginning of
the experiment and thus they expired before the probabilistic
model was initiated. We can also observe that when we
used the Greedy algorithm, the curve is rising for the first
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Figure 4. Matching Weight Comparison for 1000 workers.

4200 tasks and then it starts missing a lot of deadlines. This
happens due to the fact that the Greedy algorithm, as shown
in the previous set of experiments, takes a lot of time to
execute when the size of the graph increases. Thus, in the
current rate and while the tasks keep on coming the matching
takes too long, causing a lot of queueing for the tasks that
need to be processed. Hence, when the tasks are eventually
assigned to a worker they have already expired. Finally, the
traditional approach managed to process only 4264 tasks
before their expiration and it is obvious that the difference
with our approach would be increased constantly afterwards,
as the REACT algorithm would miss only a few deadlines.

In Figure 6 we can observe the amount of positive
feedbacks for the tasks. The feedback is decided when a
task is finished and it is positive only if the task finished
before the deadline, with a probability that is defined from
the worker’s unique feedback percentage. As the figure
illustrates, our technique that uses the worker’s profile to
decide for the ones to execute the task managed to have 4941
positive feedbacks, while the traditional approach had only
3066. Thus, we infer that the highest percentage of positive
feedback compared to the tasks that were under deadline is
due to the WBGM that we introduced. This happens due
to the fact that selecting “good” workers even with a non
optimal matching, results on a higher quality output and
it proves that we can achieve the goal of excluding low-
quality workers from the system on real-time. Providing
a highest cycle size to the REACT approach would result
on even higher improvement, although it would be more
time expensive. The curve of the approach for the Greedy
matching is similar to Figure 5, since the tasks that lost their
deadlines receive a negative feedback as well.

Finally, we present the average execution times per worker
and the average of the total execution times for each tech-
nique in Figures 7, 8. In Figure 7 we report the execution
times of the workers that executed the tasks. As can be
seen, our approach has a short execution time per worker
because it can quickly estimate whether the worker will
delay the execution of the task and the reassignment selects
workers with faster execution times. This graph includes
only the final worker that finished the task, if the worker
was previously assigned to another worker. Thus, we infer
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that using our model for reassigning the task improved the
execution times for the case where the workers decided to
delay the execution. The Greedy approach needed more time
than REACT, due to the queueing and the reason is that
although the Greedy uses the probabilistic model as well,
when the queueing forces the tasks to miss their deadlines,
they are executed in the time that the worker decides. This
happens since there is no worker that will have a better
probability to finish the task before deadline when it has
already expired and thus there will be no reassignment in
that case. The traditional approach, as expected, has the
worst average execution times since it does not react when
the user delays a task.

Figure 8 illustrates the average total execution time,
including the time needed for potential task assignments.
What is interesting to observe here is that although our
technique reassigns the tasks to other workers, opposed to
the traditional technique, it manages to process them faster
than the traditional technique. This happens because our
model can decide quickly whether the worker will execute
the task before the deadline. In addition, it proves that the
overhead of the probabilistic model and for the WBGM did
not affect the system’s performance. Moreover, it can be
observed that queueing forced the Greedy approach to result
high average execution times.

D. Scalability

In the third set of experiments we conduct an experiment
with the same scenario as in the second set, however we
use different size of graphs (in terms of workers and tasks)

and a different rate of incoming tasks so as to observe the
behavior of our approach.

In this set we are trying to “stress” the approaches of
our system to better observe their behavior. Thus, we use
the same scenario as before with a different graph size and
rates. We use a graph size of 100, 250, 500, 750 and 1000
workers and the tasks are received with a rate of 1.5, 3.125,
6.25, 9.375 and 12.5 tasks per second respectively.

We would like to point out that we set our scalability rates
(12.5 HITs/sec) even higher than the AMT rates. According
to [24] there were fewer than 18K HITs on AMT on the
25/7/12. With our rate (12.5 HITs/sec) there are 45K HITs
per hour at every server.

Figure 9 illustrates the percentage of tasks that were
processed before the deadline for all the approaches on the
different graph sizes. The REACT approach seems to be
a little influenced as the graph size increases, however it
was expected that forcing the approaches to work on higher
rates and sizes with the same deadlines would decrease their
performance. On the contrary, the traditional approach that
only needs to define an available worker for each task seems
to be influenced only by the size of 1000 workers. We
can also observe that the Greedy algorithm had a better
performance for the size of 100 than REACT, but as the
size increases and queueing occurs it starts to miss too many
deadlines and it is very interesting that for the size of 1000
workers it only managed to have 16% of the tasks completed
before the deadline.

In figure 10 we can observe the percentage of the positive
feedbacks that the tasks received as the graph size increases.



The graph seems to be proportional to figure 9 for all
approaches. The REACT approach decreases its feedback
accuracy as the size increases. This, can also be denoted to
the fact that the cycle size was 1000 for all the experiments.
Hence, while the amount of the edges increases along with
the graph, the output would not be similarly maximized if the
number of cycles remains the same. The traditional approach
was not influenced again from the increased graph size.
Finally, the Greedy matching approach reduced its feedback
percentage along with the missed deadlines. Although it
seems that the Greedy approach has a better performance
than REACT when the graph size is low, as was concluded
from the first set of experiments as well, the overhead
for coping with large graph sizes is high. On the contrary
REACT was also influenced by the increased size but not
to such an extent.

We have tried to run scalability experiments on larger size
graphs and higher rates. However, in these conditions we ob-
served that the task assignment process cannot be sustained
by the system. Although our approach still performs better
than the others, the system gets overloaded and as a result
the assignment of the tasks to the workers takes time. That
fact leads to inevitable missed deadlines and queueing for
all the approaches. One possible solution for that problem is
to split the regions so that each of the servers would contain
sufficient workers and tasks without being overloaded.

VI. RELATED WORK

Crowdsourcing systems have recently become extremely
popular and a number of commercial crowdsourcing sys-
tems have emerged, including AMT [3], CrowdFlower [4],
CloudCrowd [5] and microWorkers [6]. Additionally, appli-
cations have began to utilize crowdsourcing systems e.g., for
labelling images such as the work of Sorokin et al. in [25]
where they show that using AMT for image annotation is a
quick way to annotate large image databases.

A number of works have investigated the assignment
of crowdsourcing tasks to worker nodes. Authors in [26]
propose a task assignment model for crowdsourcing markets
where the worker’s skill is unknown. Their approach is
similar to a simplified version of the well-studied online
adwords problem. Although their approach manages to dis-
cover workers who are appropriate for the tasks, they do not
consider any QoS or real-time constraints for the tasks.

Alt et al in [20] consider the problem of providing
location-based tasks to the mobile crowd and implement a
prototype as a use case. Although they claim that tasks in
such systems can be time-critical and solutions need to be
submitted within a predefined time period, they do not pro-
pose a solution for this problem, as we do with our approach.
Moreover, their approach works in the same manner with
the traditional crowdsourcing systems where the workers
decide for their tasks. Their prototype is implemented on
mobile phones and the workers can take advantage of the

GPS location in order to find nearby tasks. In our approach,
assigning tasks based on the location can be achieved by
considering the distance among the task and the worker in
the weight function.

Authors in [27] consider a general model of crowdsourc-
ing tasks and pose the problem of minimizing the total
price, in terms of the number of assignments, that must
be paid to achieve a target overall reliability. They propose
an algorithm to decide which tasks to assign to which
workers and to infer the correct answers for each tasks
from the workers’ answers. Their algorithm is inspired by
belief propagation and low-rank matrix approximation and
they show that it outperforms majority voting. Similarly,
in [28], they propose a two-phase technique, based on
voting, in order to maximize the accuracy of the results by
selecting multiple users to process them dynamically, while
minimizing the total budget needed to achieve that accuracy.
However, our technique manages to define the most suitable
workers before the execution of the tasks and thus to reduce
the cost of the multiple assignments.

Khazankin et al in [21] propose a crowdsourcing model,
where they assign the tasks based on the worker’s “quality”
for a specific task category and they suggest that the task
assignment should be done based on the worker’s availability
to overcome deadline issues. Our approach improves that
since we take the individual user profile into consideration
to prevent deadline misses. Moreover, our technique uses
real time measurements to predict a deadline miss and re-
assigns the tasks to improve efficiency.

Authors in [16] propose an image search engine whose
results are being validated using crowdsourcing. After re-
trieving a set of similar images based on the image features,
they send them as a task to the Amazon’s Mechanical Turk
and expect from a number of workers to validate if they are
similar to the original one. They use a probability model to
predict the needed delay to receive a number of responses
on runtime. Furthermore, they try to predict the result of the
majority vote from the responses that will be received by
all workers. In contrast to this work, our goal is to predict
whether the response will be received before the deadline to
reassign the task if needed. Another system that uses human
input via crowdsourcing on a traditionally computer-based
mechanism such as a Database, is CrowdDB [29], where
authors propose a scheme to process queries that neither
database systems nor search engines can adequately answer.

One of our main contributions in this paper is to ap-
ply real-time requirements in the crowdsourcing platforms.
While, there are several studies to understand the quality of
results from AMT solvers [30], we are not aware of any
other work that attempts to provide Quality-of-Service, in
terms of real-time requirements, in such systems.

A few approaches exist in the literature that solve the
problem of the maximum/minimum weighted bipartite graph
matching. However, most of the algorithms that offer optimal



solutions such as [31], [9] are used offline and need a lot
of time to execute due to their complexity. The Metropolis
Matching algorithm that was discussed earlier is presented
in [23]. Their approach is based on the “Metropolis Algo-
rithm”. They consider a selection of edges as a state and
for every iteration they choose randomly a different set of
edges which is selected as a new state, if it provides a
better output than the previous one. Their technique provides
results quickly however the results are not optimal. As we
proved, our algorithm outperforms the Metropolis algorithm
since it produces better results at almost the same time.

VII. CONCLUSIONS

In this paper we have presented REACT, a system that
aims to exploit the wisdom of the crowd to efficiently
schedule tasks to Crowd workers under time constraints.
REACT makes it easy to define the most appropriate workers
out of the crowd to process a task in real time. We propose
a novel weighted bipartite graph matching approach that
is able to define an approximate matching rapidly and
we consider real-time constraints in the execution of the
tasks, using a probabilistic method. The advantage of our
technique over the existing task assignments methods for
crowdsourcing, is that it considers real-time constraints and
it manages to define the most suitable workers for each task.
Detailed experimental results over PlanetLab illustrate that
our approach is practical, efficient and depicts good perfor-
mance. For our future work, we plan to look at the working
of our assignment process during overloading conditions to
further improve the performance of our approach.
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