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Abstract—With the rapid growth of mobile smartphone users,
several commercial mobile companies have exploited crowd-
sourcing as an effective approach to collect and analyze data,
to improve their services. In a crowdsourcing system, “human
workers” are enlisted to perform small tasks, that are difficult
to be automated, in return for some monetary compensation.
This paper presents our crowdsourcing system that seeks to
address the challenge of determining the most efficient allocation
of tasks to the human crowd. The goal of our algorithm is to
efficiently determine the most appropriate set of workers to
assign to each incoming task, so that the real-time demands
are met and high quality results are returned. We empirically
evaluate our approach and show that our system effectively meets
the requested demands, has low overhead and can improve the
number of tasks processed under the defined constraints over
71% compared to traditional approaches.
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I. INTRODUCTION

Crowdsourcing has emerged as an attractive paradigm in
recent years that can leverage the collective intelligence of
a large crowd of human workers quickly and inexpensively,
to accomplish computational tasks. Several prominent com-
panies, recognizing the opportunities presented in such mass
collaboration systems developed their own crowdsourcing
marketplaces, including Amazon’s Mechanical Turk (AMT)
[1], CrowdFlower [2], microWorkers [3], etc. Typical crowd-
sourcing platforms constitute marketplaces for tasks, where
Requesters define tasks, and a diverse pool of humans workers,
referred to as Crowdworkers, with different expertise level,
execute them in exchange for a monetary or other reward.

Crowdsourcing can provide great benefit in cases where
tasks cannot be fully automated, or to achieve a better un-
derstanding of a situation. For example, as shown in [4],
crowdsourcing can play critical role in emergency situations,
both during and after the event, collecting information from
emergency scenes and visualizing the data to generate commu-
nity emergency maps. Crowdsourcing allows capable crowds
to participate in various tasks, from simply providing pictures
and status reports, to “validating” pieces of information, or
more complicated editing and management tasks. Such au-
tomated tools can offer a common disaster view and help
organizations ascertain the current situation, complementing
the information available through fixed, static infrastructures.
Other examples include automating stakeholder analysis[5],
improving the search engines results[6], detecting service-level
network events[7], and identifying transportation events of
interest [8].

Crowdsourcing systems introduce multiple challenges.
First, current systems attract a fluid, diverse pool of human
workers, (i.e., spammers), which often submit arbitrary an-
swers regardless of the task to collect the respective fee [9],
[10]. Spammers act as opportunistic workers which submit
random answers, often without looking at the tasks, or by
creating automated bots pretending to be human workers to
complete the tasks. At another extreme, spammers can be
malicious, working individually or in groups, focusing on the
same groups of tasks, to spread rumors, create fake responses
or influence the markets. One common approach to deal with
this problem is to introduce redundancy [11], [12], i.e., ask
multiple workers to execute the same task and use a technique
such as majority voting to determine the correct answer.
Statistically, more workers working on a task give a higher-
quality result since the impact of wrong answers is reduced by
the correct ones [13].

A second challenge is that, often, the execution of the
crowdsourcing tasks may be time-critical. For example, real-
time tasks such as emergency response, are becoming more
commonplace; these have important real-time response re-
quirements within which the results should be received. Real-
time execution is a challenging problem in these settings,
due to the highly dynamic and transient crowd, as well as
resource constraints and fluctuations in resource constrained
environments, such as mobile settings where the workers can
reside. Thus, to achieve real-time response, the workers have to
be explored both for the quality of their results, and their ability
to deliver the results within the required time constraints.

The final challenge comes from the application’s budget
constraint. The monetary compensation in the majority of
today’s crowdsourcing systems is given in an automated way
and only a few requesters of the tasks provide feedback for the
individual workers. However, based on their background (i.e.,
expertise, reliability, performance, location), some workers are
more suitable for some tasks than others, so we need to ensure
that the tasks will be executed by the most suitable workers.
This can lead to a reduction of the requester’s monetary cost,
since a small amount of suitable workers provides results
with higher confidence, compared to a group that potentially
consists of both suitable and unsuitable workers but with a lot
of noise, due to the unsuitable workers, that would inevitably
lead to a larger group (and respective payments) to increase
the confidence for the result.

Traditional crowdsourcing architectures, such as AMT, do
not provide enough flexibility as they depend on the willing-
ness of the users to process the tasks. These are further limited



as: (i) they are not designed to optimize the task assignment
process and (ii) they do not provide support for meeting real-
time response demands. A few recent works have looked at the
problem of task assignment in crowdsourcing environments.
These papers focus on the accuracy of the results [14], [15],
minimizing the error, subject to a budget constraint [16], [9]
or minimizing the amount of task assignments to achieve a
target reliability [17], [18]. However, they do not consider the
time needed to retrieve the results. On the other hand, works
that take into account response times [19], assume a generic
distribution for the individual workers execution time, and do
not consider other constraints. Finally, the problem differs from
the traditional task assignment problem in distributed systems
as: (i) crowdsourcing systems assign a variable workload of
tasks to a set of humans with different skills and characteristics,
that might be unknown, (ii) the workers cannot be expected to
be persistent or willing to execute subsequent tasks, and, (iii)
the human factor makes the execution time unpredictable.

In this paper we present CRITICAl (Crowdsourcing under
RelIability and TIme ConstrAints), our system that aims to
exploit the wisdom of the crowd to assign tasks to human
crowd workers under both reliability and real-time constraints.
Thus, our objective is to solve the task assignment problem
with respect to performance, reliability, and cost. CRITICAl
combines crowdsourcing with task assignment techniques to
provide high-quality results and satisfy real-time response
requirements of the tasks. We summarize our contributions:

• We propose CRITICAl, our system that determines the
most appropriate groups of human workers to assign
a set of tasks, so that high-quality results are returned
while meeting task real-time constraints. Our system
computes the reliability of a group of workers and
estimates the probability that the group of workers will
execute the task within the deadline in order to per-
form dynamic assignment of the crowdsourcing tasks
into groups of workers based on the characteristics of
the tasks and the worker profiles.

• We show that the task assignment problem is NP-hard
and then provide a polynomial online algorithm that
effectively reduces the search space by several orders
of magnitude. Our approach systematically investi-
gates the search space for Pareto optimal solutions,
with respect to the objectives.

• We carry out a case study on CrowdFlower [2], a
popular crowdsourcing system, to extract the behavior
of the human workers for real world tasks, and use
these findings in our experimental evaluation.

• We perform extensive experiments to evaluate our
approach and show that CRITICAl effectively meets
the requested demands, has low overhead and can
achieve over 71% improvement on the number of tasks
processed under the defined constraints, compared to
traditional approaches such as AMT.

II. SYSTEM MODEL

Worker Model. The crowdsourcing system comprises a
set of human crowd workers, denoted as wi ∈ W , that register
to CRITICAl to receive tasks, defined by the task Requesters.

Each worker wi is associated with a set of attributes, denoted as
〈idi, lati, longi, reli, completed tasksi[], preferencesi[]〉,
where idi represents the worker’s unique identifier, the user’s
geographical coordinates are represented in (lati, longi),
and statistics about each completed task are maintained in
completed tasksi[]. We maintain the current reliability for
wi, denoted as reli, that represents the probability that the
worker will provide a correct answer for a task. This metric
is dynamically computed, and updated based on the answers
provided by wi (explained in Section IV.A). To assist in the
selection of tasks, some crowdsourcing systems allow workers
to specify a list of preferencesi[] in the execution of tasks,
based on the workers’ interests and capabilities, such as desired
task categories and a desired monetary compensation for the
tasks. These assist the system in selecting workers for tasks,
for example, it might be necessary to assign skilled workers
to tasks to produce high confidence results.

Task Model. Each taskj ∈ T is associated with a set of at-
tributes: 〈idj , latj , longj , descriptionj , deadlinej , rewardj ,
categoryj , amountj〉, where idj represents the unique identi-
fier for taskj , (latj , longj) represent the geographical coordi-
nates of the location where taskj refers to, and descriptionj ,
is the text description of the task along with the possible
choices. For instance a descriptionj might be: “Is there traffic
congestion in your geographical location? (Yes/No)”, etc.,
rewardj refers to the monetary reward received by the worker
when he/she completes taskj , categoryj denotes the category
that the task belongs to, and amountj represents the amount
of workers requested to process the task.

Each taskj is characterized by a time constraint deadlinej ,
specified by the Requester, within which the task needs to
complete. This is an absolute value. If a task does not complete
within a deadline, then we assume the worker failed to meet
the task requirement. When a taskj is assigned to the system,
we denote as ttdij the time-to-deadline, thus the time interval
from the assignment of taskj to wi until the deadlinej expires.
As the task executes, the ttdij is updated dynamically based
on the time elapsed. Also, we denote execij as the total
execution time from the assignment of the taskj to wi until
its completion. Each worker wi provides a responseij for
each taskj it executes. We consider as valid responses the
ones received within the task’s deadlinej . From the list of the
worker responses we can identify the correct answer for the
task. In particular, in CRITICAl we consider tasks that can
be binary or multiple selection tasks, with a list of possible
answers as a finite set. We extract the final answer for a task
using the Majority voting technique where we determine the
correct answer as a product of the Majority voting of each
responseij received before the deadlinej expires and denoted
as responsej . However, metrics other than Majority voting
could also be incorporated (discussed in Section IV-A).

Discussion. Similar to the commercial crowdsourcing sys-
tems, we denote the amountj for the workers that process
a task. Intuitively, the more the workers that process a task,
the higher the reliability of the outcome[13], and thus, the
amountj is only constrained by the payment that these
workers receive. As we show in the experiments, selecting
small groups of reliable workers can perform better, since
assigning additional reliable workers slightly improves the
task’s aggregated reliability, but sabotages subsequent tasks.



A. Bipartite Graph

We use a bipartite graph to represent all the possible
assignments between the workers and the tasks, similar to
[18], [20]. In a bipartite graph G = (U ,V, E) the vertices
can be divided into two disjoint sets U and V such that
each edge eij = (ui, vj) ∈ E connects a vertex ui ∈ U
with one vj ∈ V . Each vertex in U represents a worker
wi, who is available to execute tasks. Vertices in V represent
all tasks taskj to be processed by workers. The respective
edges eij = (wi, taskj) ∈ E , represent a possible assignment
between a task and a worker. When a taskj is matched to
several workers, then the graph contains multiple edges for
taskj ; each edge corresponds to a different worker. We denote
as groupj = {ug|∀egj ∈ E}, all the workers which are
assigned for taskj , defined from the set of the edges.

Graph Construction. In the crowdsourcing systems for
the location-dependent tasks that we consider, the environment
can be very dynamic with frequent worker insertions and
departures and dynamic injection of tasks, causing changes
to the respective graph. Thus, the bipartite graph needs to
be constructed and maintained in real-time. The CRITICAl
system needs to keep track only those tasks that involve its
geographical region and the workers that currently remain in
that region, since we target on geo-located tasks, so that tasks
will be processed by workers that are spatially close to the
location defined by the task. Hence, each worker is registered
to the CRITICAl server in the geographical area in which the
worker belongs based on his geographical location, and each
task is registered to the respective server based on the task’s
latj and longj . To provide a scalable solution we perform a
spatial decomposition of the geographic area into a number
of non-overlapping regions, similar to [21], where each region
is assigned to a CRITICAl server who is responsible for the
region; this allows our task assignment algorithm to perform
in a scalable manner.

III. PROBLEM DEFINITION

Assume U the set of workers and V the set of tasks to
be allocated to the workers. Our goal is to determine the
appropriate group of workers groupj in the bipartite graph
G = (U ,V, E) so that each set of workers assigned to process
taskj , will fulfill two objectives : (i) maximize the probability
of providing the correct responsej , based on the group’s ma-
jority vote denoted as P (votegj),∀ug ∈ groupj , (ii) maximize
the probability that the groupj of workers will execute the
taskj within its deadline P (execgj < ttdgj), referred as
P (timegj)∀ug ∈ groupj , and ensure that the probability of
meeting this constraint is higher than a predefined threshold,
denoted as B. This is formulated as follows:

maximize
(
P (votegj), P (timegj)

)
, ∀ug ∈ groupj

subject to
|U|∑
i=1

xij ≤ 1, ∀j = 1, ..., |V |, where xij ∈ {0, 1}

P (timegj) > B

where xij is 1 denotes that edge (wi, taskj) is an instantiated
edge for the matching. Finding a feasible solution that mini-
mizes both objective functions simultaneously is a challenging
problem. In the following section we show that the problem

is NP-hard and it can be reduced from the Knapsack problem.
Hence, we seek to find Pareto optimal solutions [22], [23], thus
a selection of workers which cannot be improved in any of
the objectives without degrading the other objective. Solving
this problem at runtime raises several additional challenges
that need to be addressed: (1) the amount of possible groups
of workers can be numerous, thus computing all possible
combinations can be computationally infeasible to provide a
real-time solution, (2) the objective P (timegj) needs to be
computed at runtime since it depends on the available slack
time until the deadlinej of a taskj expires, and (3) computing
the objective P (votegj) is a computationally costly procedure.

IV. TASK ASSIGNMENT PROBLEM

In this section we present our techniques for task assign-
ment. We start by computing the reliability of an individual
worker and a group of workers in section IV-A, and we then
estimate the probability that the group of workers will execute
the task within the deadline in section IV-B. Finally, in section
IV-C we show the NP-hardness of the problem and propose
a solution that defines the most appropriate group of workers
for each task, based on the defined constraints.

A. Worker Reliability

1) Estimating Individual Worker Reliability: As discussed
earlier, in a crowdsourcing system it is difficult to estimate
the reliability of the users a priori, as the set of workers is
not persistent, and the workers available to participate at a
given time instance is not known in advance. Furthermore,
some users may be new participants in the system. Several
techniques have been proposed to extract user reliability in
environments like crowdsourcing[14], [15].

We use an iterative approach, inspired by the streaming
Expectation Maximization (EM) algorithm proposed in [24],
to estimate the reliability reli of each worker wi. Our tech-
nique has the benefit of determining the users unobserved
reliabilities adaptively, until it converges to their true values. In
addition, it is able to operate in a streaming environment, like
crowdsourcing systems, by adjusting the reliabilities, whenever
a user executes a task. Suppose an unobserved categorical
variable Xj , for task j. The true answer of Xj is denoted as
xj ∈ Q(Xj), where Q(Xj) is the set of possible answers for
Xj . For each taskj we assume a uniform distribution P (Xj)
over the possible set of answers. The answer of wi is denoted
as yi,j if queried for Xj , and Yi,j is the associated variable.
Each wi has an unknown probability rel′i to provide a wrong
answer x, for Xj . We assume that a participant provides an
answer from the defined list of answers (Q(Yi,j) = Q(Xj))
and that each wrong answer is equiprobable. Thus:

P (Yi,j = xj |Xj = xj) = 1− rel′i, ∀i, j (1)

P (Yi,j = x|Xj = xj) =
rel′i

|Q(Xj)| − 1
, ∀i, j, x ∈ Q(Xj) \ {xj}

(2)

If the probabilities that a user lies, {rel′i}i, are known, inferring
a distribution is a straightforward task. These parameters,
however, are difficult to be estimated. The EM algorithm is
a common technique to solve such problems. It alternates
between computing an expectation of the parameters’ values,



considering the observations and the current estimates, and
updates the parameters by maximizing this expectation. Fol-
lowing [25], [24], [26], we use an online EM algorithm that
updates the reliability values using a stochastic approximation
step. For completeness we summarize the main points below.

In our approach, each participant’s reliability is up-
dated using a specific γdi , which is defined such that
limD→∞

∑D
di=1 γdi = ∞ and limD→∞

∑D
di=1 γ

2
di

< ∞
and di is the number of times this participant has been
queried, to perform the stochastic approximation update of
the reliability estimates. Our algorithm retrieves the answers
from the selected workers and updates their reliabilities reli for
each wi as follows. We estimate for each answer x ∈ Q(x)
of the task, the function α(x), that represents the posterior
probability α(x) ≡ P (Xj = x|Aj , p1, p2, ...),where Aj are
the associated answers for taskj as: α(x) =

α̂(yi,j)∑
x∈Q(Xj)

α̂(x)

where α̂(x) = P (Xj = x)
∏

i∈W P (Yi,j |Xi,j = x). Then, we
estimate the reliability of each wi, based on the answer as:

rel′i = (1− γdi)rel
′
i + γdi

(
1− α(yi,j)∑

x∈Q(Xj)
α(x)

)
(3)

Hence, the weight metric reli = 1 − rel′i represents the
user reliability, where a wi provides correct responseij with a
probability reli and wrong responseij with probability rel′i.

2) Group Reliability: We now explain how we compute the
reliability for a group of workers groupj , given the reliability
of an individual wi as reli. One common approach in the
Crowdsourcing systems[27], [28] is to allocate each task to
several workers and accept as responsej the one provided
from the majority of workers, denoted as Majority Voting [9].
The intuition behind Majority Voting is based on the assump-
tion that the majority of the workers can be trusted[13]. Thus,
we follow that assumption, to compute the probability of the
selected groupj to provide a correct responsej for taskj .

Suppose a variable rij , for each each responseij that
wi provides for taskj , where rij = 1 when wi provides
a correct responseij and 0 otherwise. Thus, rij is 1 with
probability reli and 0 with probability rel′i. We denote as Cj =
{[r1j , r2j , ..rgroupij ],∀wi ∈ groupj , where

∑|groupj |
i=1 rij >=

|groupj/2|}. Thus, the set Cj contains all variations of answers
from the set of all 2|groupj | possible combinations, where at
least half of the workers provide a correct answer.

Clearly, this approach is computationally costly. One way
to extract this set efficiently at runtime is to perform Iterative
deepening depth-first search (IDDFS)[29] to extract all possi-
ble combinations of the workers to receive a positive answer,
assuming that if a worker is not included at a node, he provides
a negative answer. IDDFS is equivalent to breadth-first search,
but it uses less memory. It visits the nodes in the search tree
in the same order as depth-first search, but the cumulative
order in which nodes are first visited is breadth-first. Thus,
we can extract the combinations of workers providing positive
answers, while pruning can exclude all nodes whose amount
of workers is less than |groupj/2|. Finally, we compute the
probability P (votegj) by summing the probabilities of the
individual items l in set Cj , where the probability of each item

is computed by the product of the probability of the correct or
wrong answer rij that worker i provides for that item.

P (votegj) =
∑
l∈L

(∏
reli,∀wi ∈ l&&rij = 1∗∏
rel′i, ∀wi ∈ l&&rij = 0

)
(4)

Thus, maximizing this probability means that the workers that
will be selected will have high accuracy in the particular task
category, so they can be considered as experts, and we should
select these first rather than considering low-accuracy workers.

Discussion. Although in our model the correct group
responsej is determined by a Majority Vote approach, differ-
ent evaluation metrics might be employed [30]. For instance,
another evaluation metric might determine the responsej as
the answer selected from those workers with the highest
individual reliability, through a technique such as Weighted
Majority Voting. Consider the example where two reliable
workers answer “a” and three unreliable workers answer “b”.
Such a Weighted Majority Voting metric could be defined
by dividing the summation of the workers reliabilities that
provided a specific answer to the amount of the workers, and
selecting the highest one. For such a metric we alter the set
of desired combinations as: Cj = {[r1j , r2j , ..rgroupij

], ∀wi ∈

groupj , where
( ∑

reli

|groupj | , ∀wi s.t. rij = 1
)
>

( ∑
reli

|groupj | ,∀wi

s.t. rij = 0
)
}, and compute the probability using equation (4).

Also note, that, although the possibilities on the set Cj refer
to binary answers, since in multiple choice answers a majority
vote might contain less than half of the answers, incorporating
multiple choice answers is a direct extension to our approach,
by inserting the appropriate possibilities.

B. Real-time Execution

Estimating the execution time of a task by a worker is a
challenging problem since it depends on the human factor,
which makes it difficult to provide an accurate prediction
beforehand. However, Ipeirotis in [31] has observed that the
execution time in these systems follow a Power Law Distri-
bution [32], forcing the execution times of the tasks to cluster
around a typical value. We exploit that observation and use
the CDF of the Power Law distribution for each individual
worker, based on its previous execution times, to estimate the
probability of a task being completed before its deadline.

A quantity x obeys power law when it is drawn from a
probability distribution p(k) ∝ k−α, where α is a constant
parameter, known as the scaling parameter. We denote P (k)
the CDF of the power-law distributed variable, that is defined
as P (k) = Pr(K ≥ k), where K is the observed value. Thus,
P (k) =

∫∞
k

p(k′)dk′ = ( k
kmin

)
−α+1

, where kmin > 0 must
be a lower bound on the power-law behavior. The α value is
computed as: α = 1+n[

∑n
i=1 ln

ki

kmin−1/2 ]
−1

. In our approach
the ki values represent the execution times execih of wi, for
each task h that he has completed. The lower bound kmin

is set as the worker’s lowest measured execution time for a
task. Thus, we can compute the probability P (execij < ttdij),
referred as P (timeij) for each wi to meet the deadlinej
of taskj as: P (timeij) = 1 − P (ttdij). Finally, estimating
the probability of all the workers in the groupj to finish



the execution before the deadlinej , can be computed as the
product of the individual workers probabilities:

P (timegj) =
∏

wi∈groupj

(P (timeij)) (5)

Discussion. In our approach we estimate each user’s reliability
and execution times based on his profile. Since users might
perform differently under tasks with varying difficulty or for
different types of tasks, we can exploit the categoryj field of
the user’s completed tasks to preserve different user statistics
for each category and estimate both reliability and execution
times for the respective type of task.

C. Multi-Objective Optimization Algorithm

Naively, the task assignment problem can be solved using
techniques such as branch and bound, to determine all feasible
solutions and then select the optimum one. Clearly, these
solutions are computationally infeasible to compute at runtime
for the size of the graphs that we consider, since they would
need to evaluate all possibilities of correct answers from the(

n
amountj

)
possible groups of workers and this evaluation

would need to be estimated at runtime, leading to a complexity
of O(

(
n

amountj

)2
) to select amountj workers.

In the remainder we propose an approach which searches
for Pareto optimal solutions[22] that considers both (i) maxi-
mizing the reliability of a group of workers and (ii) meeting
real-time constraints. We present the notion of dominance
between two solutions. Given two solutions, a solution is
dominated by another one if its performance is identical or
worse than the other one for both metrics (reliability and
real-time) and strictly worse for at least one of the metrics.
Essentially, a strategy that is not dominated by any other
strategy is Pareto optimal; this means, it is impossible to find
a better solution for both metrics without paying more in cost.

In our system, we aim at identifying feasible Pareto optimal
solutions for the objective functions, by determining an assign-
ment of the tasks to a group of workers with respect to the
objectives. Existing approaches, that exploit Pareto optimality
in problems that can be expressed as bipartite graphs, focus
on matching the individual nodes from the vertices set, and do
not consider the problem of the optimal matching for a group
of vertices with another vertex [23]. We first observe that the
problem is NP-hard and then we propose an effective and fast
algorithm for the task assignment problem that produces high-
quality results in a computational efficient manner.

NP-hardness. Let us consider a simplified version of
our problem, where we aim at optimizing the one objective
P (votegj), subject to the constraint P (timegj) > B. De-
termining the optimal allocation, where each selection has
a utility with a respective cost and the total bound for the
cost cannot be exceeded is an NP-hard problem, as it can be
reduced from the well-known Knapsack problem.

Assuming an instance of the Knapsack problem we can
create an instance of our problem. Given a set of objects with
utility zi and cost ci, and a bound C, the goal is to find a
set of x objects that maximizes

∑x
i=1 zi, while

∑x
i=1 ci ≤ C.

We create an instance of our problem where for each object
we have a worker wi with reliability reli (as a utility) and

a respective probability P (timeij). Compared to the original
problem, our objective function P (votegj) is more complex
than the summation of values of the selected items. Although,
we prove in Lemma 4.1 that P (votegj) is monotonic given a
fixed size of workers, we do not know its monotonicity with
respect to the size of the group. These properties make the
objective function a generally non-linear one, which reflects
more hardness than the general Knapsack Problem. Our de-
fined constraint P (timegj) =

∏
wi∈groupj

(P (timeij)) > B
is equivalent to − log

∏
wi∈groupj

(P (timeij)) < − log (B),
which is equivalent to

∑
wi∈groupj

(− log (P (timeij))) <
− log (B) and so the cost for each wi is − log (P (timeij))
and the bound C = − log (B). Hence, the Knapsack problem
can be reduced to our problem and so our problem is NP-hard.

CRITICAl Algorithm. In order to solve the NP-hard prob-
lem of task assignment we develop a polynomial CRITICAl
algorithm. Our algorithm is based on an iteration for every
unassigned ui ∈ U , where in each iteration we alter the
group selection groupj to ensure that it fulfills the real time
constraint and tries to concurrently maximize both objectives.

Our algorithm is executed in one-pass by (i) setting a
boundary on one of the two objectives, (ii) determining the
solution that maximizes that objective and (iii) traversing
among the feasible solutions that are able to maximize the
other objective. In the following we set a bound on the
P (timegj) objective denoted as B, although we could easily
bound the other objective as well. This bound is utilized
to make sure that the probability of meeting the real time
constraints will be higher than B. Thus, we state that our one-
pass algorithm provides a solution that fulfills the boundary for
the objective function P (timegj) (if such a solution exists) and
aims to maximize P (votegj), for the bound that we have set.

Step 1: First we extract the list of the available workers
L from the bipartite graph as: L = {ui ∈ U , where eij /∈
E∀taskj ∈ V} (thus there is no edge among these workers
with any task) and we sort the list L, based on the individual
probabilities of the workers to meet the real-time constraints
and their reliabilities, as: Sort(L) by (P (timeij), reli). Then,
for the taskj that we need to allocate workers, we create an
empty set groupj = {∅} that represents the group of workers
that will process taskj . This initialization step enables us to
instantiate the needed structures.

Step 2: At this step we iterate through the workers in sorted
list L and we add every wi in groupj until the amountj
requirement has been fulfilled. Thus, this step ensures that we
will retrieve a feasible solution, if it exists, that maximizes
P (timegj). This happens, as, due to the sorting in Step 1, we
have inserted the amountj workers with the highest proba-
bility P (timeij), and due to the definition of that probability
there is no other worker allocation with amountj workers that
provides a highest P (timegj).

Step 3: We continue iterating through the workers list L.
For each wi we instantiate a new group of workers group′j ,
which extends our existing selected group with the current
wi. Then, we examine if the current worker is more reliable
than one of the selected workers in groupj , while remaining
among the set of feasible solutions, defined by the B bound.
We investigate if we can swap that worker with any of the
workers wg assigned to the group groupj and estimate if



this swap can increase the objective function that refers to
the reliability. We also state that due to Lemma 4.1 (shown
below), we do not compute the objective P (votegj) which is
computationally costly, but we only evaluate the distance of
each individual wg in the group with the current worker wi to
determine the best swap decision. After determining the “best”
swap, i.e. the swap that increases the group reliability more
than the other possible swaps, while remaining in the feasible
region, we choose to make the swap. Thus, we remove wg from
the set and we add wi. Also note, that this swap produces a
local optimum in every iteration as we show in Lemma 4.2. If
wi does not increase the objective probabilities, it means that
he is either an unreliable worker or will probably miss the
deadline, compared to our selected workers, and we do not
consider him for taskj . We also state that we could stop the
iterations when a specific threshold has been reached for both
probabilities, to reduce the computation time. The pseudocode
of this step is summarized in Algorithm 1.

Algorithm 1 Evaluate wi ∈ L for groupj
tmp group = null; tmp dist = 0;
for (wg ∈ groupj) do

group′j = (groupj ∪ {wi}) \ {wg}
if (reli − relg > tmp dist && P (time′gj) > B) then

tmp group = group′j ; tmp dist = reli − relg;
if (tmp group! = null) then groupj = tmp group;

Lemma 4.1: The complexity of the objective function
P (votegj) grows exponentially with the amountj of workers,
since we need to compute all the possibilities that provide
positive majority answers out of the 2amountj possibilities.
However, the function is monotonic, since selecting a worker
k with individual reliability relk ∈ g, instead of a worker
k′ with individual reliability rel′k ∈ g′, where relk ≥ rel′k
and g \ {k} = g′ \ {k′}, results in P (votegj) ≥ P (voteg′j).
This happens since the derivative of P (votegj) with respect to
one of the workers reliability relk, provides a positive number
as explained below. The derivative P (votegj)

′ is equal to
the summation of the derivatives: (

∏
reli,∀wi ∈ l&&rij =

1*
∏

rel′i,∀wi ∈ l&&rij = 0, ∀l ∈ L)′. Starting from
the case where everybody answers correctly: (rel1 ∗ rel2 ∗
..relk ∗ ..rel|L|)′, each of the cases, that wk answers correctly,
eliminates the negative product of the derivative of the case
of answering wrongly (rel1 ∗ rel2 ∗ ..(1 − relk) ∗ ..rel|L|)′.
However, when we reach the case that wk answers correctly
and the correct answers are |groupj/2|, we cannot consider
the same case with wk answering wrongly, since we would ex-
ceed the constraints. Thus, the remaining products are positive
numbers and so P (votegj) is monotonic and increasing.

Lemma 4.2: In every iteration the selected worker wi has a
probability to meet the real-time constraint P (timeij), that is
worse or equal to the probabilities of the workers in groupj ,
due to the sorting. However, we swap the wi with another
worker with the smallest reliability from groupj that provides
a solution in the feasible region. Thus, taking Lemma 4.1 into
consideration, we ensure that for the set of workers groupj ∪
{wi}, there is no other feasible solution with amountj workers
and highest P (votegj) and thus, it is a local optimum.

Dynamic Selection of the Workers. Crowdsourcing envi-
ronments are inherent dynamic, affecting the structure of the

bipartite graph. Thus, if new workers become available during
the task assignment phase, we do not take these workers into
account, since it would increase the complexity of defining a
solution. On the other hand, if during a task execution workers
disconnect from the system, or similarly fail to provide an
answer within the time deadlines, these workers are considered
as providing a wrong answer for the task.

Worst-Case Complexity of our algorithm. Assume n
workers. First we sort the workers that costs O(nlogn)
and we traverse through the workers list. In case we have
not fulfilled the amountj requirement we add the current
worker to the worker group that costs O(1), thus it costs
O(amountj). Then for each of the n − amountj workers,
we iterate through the amountj workers in the groupj to
determine if a swap can provide an improvement, which costs
O(amountj ∗ (n − amountj)), since the evaluation of the
improvement is O(1). Thus, the iterations through all the
workers cost O(amountj∗(1+(n−amountj))) and the worst
case complexity of our algorithm is O(nlogn+amountj∗(1+
(n−amountj)))=O(n∗amountj). Keep in mind, though, that
typically we expect the users to provide a small amountj of
requested workers, compared to the total available workers.

V. EXPERIMENTAL EVALUATION

Case Study. Crowdsourcing systems such as the AMT, do
not allow us to control the task assignment. Thus, we carried
out a study on CrowdFlower, that exploits several crowdsourc-
ing platforms (including AMT), to extract the behaviors of the
workers for different types of tasks. We created and assigned
approximately 4K tasks and exported response times for the
different tasks and workers accuracy (both historical accuracy
provided in the Crowdflower results and the actual accuracy in
the specific tasks). The crowdsourcing tasks that we injected
contained Tweets from LiveDrive; this is a Twitter account
where people in Dublin report traffic events. The objective
was to evaluate whether each specific Tweet refers to traffic
events such as “M50 South is heavy from J16 Cherrywood to
Bray North Exit.”, or not, such as “@livedrive I never received
my t-shirt, what happened?”. Each task contained five tweets
and the study reported that users could answer our tasks in 69
seconds on average. However, in some cases the completion
time could take up to 3 hours, due to the lack of an assignment
policy, which is unacceptable for real-time response.

We used the observations and results from these tasks to
define the values of the parameters in our experiments. We
extracted the “trust” field from the results, to determine the
users reliability. The distribution of the workers’ reliability is
shown in figure 7 and we will discuss it later. For the purposes
of our experiments each worker that receives tasks from the
system, processes them within a time interval (min time,
max time) that is randomly decided based on the worker’s
profile. These times can range from an absolute minimum of
9 seconds to an absolute maximum of 90 seconds. We decided
to set tight deadlines for the tasks ranging between 20-60
seconds, based on the completion times of the tasks. Hence,
since the execution time of the workers could be higher than
the task deadlines, except from deadline misses, we used it
to model a worker that abandons a task or leaves the system.
All experiments in the CRITICAl system were executed on an
Intel Core2 Quad Q9300 processor with 4GB of RAM.
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Since there is no technique, that we know of, that deals with
the dual problem of real-time and reliable task assignment in
crowdsourcing systems, we compare our approach with: (i)the
Traditional approach, where the tasks are assigned to workers
in a random manner, and (ii)the REACT Algorithm, developed
in our previous work in [33], that aims to determine the
optimal selection among workers and tasks to meet real-time
criteria only. The REACT algorithm, for a predefined amount
of cycles, selects different edges for the matching arbitrarily
and accepts the new state if it improves the objective function.
REACT differs from CRITICAl in two important ways: (i)
it was developed to match each task with one worker, rather
than matching each task with amountj workers which is the
focus of this work, and (ii) focuses on real-time constraints.
For the purposes of the comparison we extend REACT so as
to match multiple workers for each task. The experimental
evaluation focuses on the following parameters: (i) Quality of
Results, (ii) Efficiency, (iii) Average Execution Time, (iv)
Comparison with existing techniques, (v) Fair Selection of
Workers, (vi) Comparison with Individual Objectives and
(vii) Scalability Comparison.

Quality of Results. Figure 1 illustrates the working of
our approach. Assuming there are 50 available workers and
we aim to select 4 workers for a task. We plot the set of
“Solutions” that presents all the possible groups of 4 workers
(approximately 230K) and we also plot the ones that were
evaluated as “Pareto optimal” solutions (shown with a red
color). Suppose that the real-time bound B is set to 0.5 (while
in the following experiments we set B as 0.85amountj ), and
thus only the solutions above the red line are considered
as feasible solutions. We plot the selection of the solutions
from CRITICAl, as the algorithm iterates through the available
workers. As can be observed, CRITICAl first selects the
solution with the highest group probability that the deadline
will be met, and traverses through the Pareto optimal solutions
to improve the group reliability, while remaining in the feasible
region, imposed by the real-time constraint B. CRITICAl
selects 6 out of the 8 Pareto optimal solutions that exist in
the feasible region and accepts the last one which reflects the

maximum reliability for the selected bound B.

Efficiency. We also present the efficiency of our approach
in terms of execution time compared to the optimal solution
which is the first Pareto optimal solution that meets the real-
time constraint. To determine that solution we evaluate all
possible solutions, but we use pruning techniques to skip
evaluating solutions that will not lead to an optimal or feasible
solution. All of the following are averages of 5 runs.

Figure 2 presents the average time needed to select the
group of workers when varying the number of workers from 1
to 8, from a set of 30 workers. The selection of a small set for
the available workers and amount of selected ones, is due to
the running time for determining Pareto optimal solutions. As
can be seen, the running time of CRITICAl is negligible, with
a worst case of 15ms for the assignment of 8 workers, while
the optimal solution needed 1166 seconds. We also state that
the respective euclidean distance of CRITICAl from the closest
feasible Pareto optimal solution, (in the range [0,

√
2]) was zero

in the majority of the experiments and did not exceeded 0.018.
In figure 3 we conduct a similar experiment, but we vary the
set of available workers from 10 to 100 and select 4 workers.
Again, CRITICAl does not exceed 3.3ms to provide an answer,
while the optimal solution for the set of 100 workers took 455
seconds, while the euclidean distance was negligible.

Average Execution Time. In figure 4 we present the
running time of CRITICAl to determine a solution for various
worker sets and amount of selected workers, when the available
workers could be high. As can be observed, the amount of
the selected workers plays a small role to the execution time,
compared to the size of the workers set. Nevertheless, consid-
ering CRITICAl servers with small available worker sets, our
algorithm can provide rapid results (it takes less than 11ms for
selecting 9 workers from 1000 workers). Respectively, even for
a set of 10000 workers we need less than 27ms to determine
groups of 9 workers, while in a worker set of 100000 workers
we may need up to 235ms to find the group of 9 most suitable
workers. Keep in mind that the tasks typically need some
minutes to be performed, and so spending some milliseconds
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to determine suitable workers will lead to the reduction of the
total execution time (due to the selection of faster workers).

Comparison with existing techniques. We also conduct
real-time experiments that emulate the behavior of the workers
on different tasks, that arrive on predefined rates. In all
experiments we use a worker set of 1000 workers with a
reliability distribution, defined by figure 7. Figure 5 illustrates
the amount of tasks that have been processed successfully,
meaning that the majority of the workers in the group have
answered correctly and before the deadline. We present the
behavior of the approaches where each task is processed either
by a group of 3 or 5 workers. As can be observed, when a task
is processed by 3 workers, CRITICAl outperforms the other
approaches by successfully processing 84.2% of the tasks; this
is due to some infeasible solutions (e.g. tasks with extremely
small deadlines or inadequate available workers). Also note
that for the first two tasks each worker receives a probability of
1.0 to process the task on time, so as to train the system, that
causes some “non-optimal” assignments. The REACT algo-
rithm with 3 workers per group has a better performance than
the Traditional approach that processes approximately 48.8%
of the tasks successfully, with a percentage of 72.1%. Hence,
although the amount of cycles for REACT is maximized
according to the tasks rate, such an approach is not enough
to provide a good solution for a group of workers, in contrast
to its performance for a single worker per task assignment; this
is because an arbitrarily selection might insert a good worker
in the group, but it requires too many iterations to provide
good solutions, as the amountj increases. When selecting 5
workers, CRITICAl has a slightly reduced performance with
82.8% of the tasks successfully performed, which is due to the
limited amount of workers since: (i) increasing the amount
of workers increases the probability of missing the deadline
individually and (ii) selecting more workers per task reduces
the amount of “good” available workers for the following tasks.
Although our approach is slightly affected by these factors, the
REACT algorithm is highly affected with only 52% of the tasks
successfully processed. The Traditional approach performs
similarly with 48.3% of the tasks successfully processed due
to the random selection.

Successfully Processed Tasks. Figure 6 shows the amount

of tasks that were processed successfully by each individual
worker. An important observation is that although only 70.6%
of the tasks were successfully performed by the individual
workers, in our approach, the selection of groups with both
high reliability and execution time, has led to 82.8% successful
tasks. Thus, although the selection might include some unreli-
able or slow workers, we ensure that the group as a whole
will provide good results. The REACT algorithm managed
to process 48.3% of the tasks successfully for the individual
workers, meaning that the selection of the workers for the
groups increased the efficiency slightly, due to the insufficient
amount of cycles. Finally, the Traditional approach performed
only 48.7% accuracy for the individual workers, similarly to
the group’s selection, proving that, a random selection of a
large group does not ensure that the task will be successfully
processed. Although the REACT and the Traditional approach
have almost the same amount of successful tasks from the
individual workers, the group selection of REACT leads to a
higher amount of successful tasks as a group (figure 5).

Fair Selection of Workers. Figure 7 presents the corre-
sponding accuracy of the individual workers with CRITICAl.
As the figure shows, the workers typically answer with a
probability that is close to their reliability percentage (as
shown by the blue line). Nevertheless, the workers #640-#680,
provide different percentages, since they have only received
a few tasks, as we show in the following figure and thus
their reliability has not converged to their actual reliability.
Moreover, as illustrated in the figure, the workers after #680
have not been selected at all for executing a task. This is
because CRITICAl prefers to select reliable workers (experts)
when the rate of tasks enables such a selection. However,
different rates or deadlines, differentiate the amount of selected
workers as the system becomes more loaded. In figure 8 we
show the corresponding amount of tasks that each worker
processed. Note that, the amount of tasks does not depend on
the reliability of the workers (although the slope is similar),
since some of the workers are faster and they are preferred
when a task has a tight deadline. Moreover, these workers
become available faster and they can process more tasks.

Comparison with Individual Objectives. Figure 9 illus-
trates the benefit maximizing both objectives, although this



leads to a higher computational complexity than maximizing
one of the objectives. First, we execute the same experiment as
before but we select the five most reliable available workers
for each task. As the figure shows only 82.8% of the tasks
managed to meet the deadline and 74.2% were completed
successfully, since reliable workers might respond slowly and
the amount of highly reliable available workers decreases as
we assign the workers to tasks. On the other hand, when we
select the five workers with the highest probability to meet the
deadline for each task, we manage to retrieve 97.8% of the
tasks on time. However, without considering their reliability
we select a lot of unsuitable workers and thus only 73.4% of
the tasks were completed successfully. CRITICAl bridges the
gap among these objectives and manages to process 82.8% of
the tasks before the deadline.

Scalability Comparison. In this experiment we try to
“stress” the approaches, in different rates and group size, to
better observe their behavior. We use the same scenario as
before but we vary the rate from 2.5 tasks per second up
to 6.6 tasks per second. We would like to point out that we
set our scalability rates (6.6 HITs/sec) even higher than the
AMT rates, since according to [34] there were less than 18K
HITs on AMT on the 25/7/12, while our rate (6.6 HITs/sec)
equals to more than 23K HITs per hour and just for one
CRITICAl server. As figure 10 shows CRITICAl provides
the highest quality on the amount of successfully processed
tasks, due to its fast and effective selection, with more than
78.7% successful tasks for the rate of 6.6tasks/second. Note
that the percentage is slightly reduced as the rate increases,
since fewer “good” workers are available in the workers set.
On the other hand, the REACT is highly affected and drops
from 80% at the rate of 2.5tasks/second to 43.7% when the
rate becomes 6.6tasks/second. This is because there are fewer
“good” workers and the algorithm needs too many cycles to
identify them, while the cycles need to be reduced so that all
the incoming tasks will be assigned. The traditional approach,
that assigns the tasks randomly, only becomes affected when
the rate becomes 6.6tasks/second where the (random) selection
of slower workers leads to queuing.

Figure 11 shows how the approaches scale when the group
of workers to be selected increases. As can be observed,
CRITICAl is only affected for a group of 7 workers that
leads to a 79.5% of the tasks being successfully processed.
This derives from the fact that the “good” available workers
decrease when we assign more workers on each task. The
REACT algorithm is affected by the same issue, however,
its percentage of successful processed tasks drops to 43.1%
for a group of 7 workers, since the maximum amount of
cycles that can be achieved is not sufficient when the group
size increases. Once again, the Traditional approach is slightly
affected, although its quality is basically unacceptable for a
commercial system. We also note that, we do not further extend
the group size, since (i) typically tasks are executed from less
than 10 workers and (ii) selecting additional workers for each
group would not increase the amount of successful tasks, as
shown in the figure, since we have already selected the workers
that maximize both objectives. Thus, inserting more workers
for a task will not improve the result, as shown in [9], but it
will increase the cost for paying the workers.

Finally, in figure 12 we present how the approaches be-

have with more strict and lax task deadlines, compared to
the deadline we had set for the previous experiments that
ranged among [20,60]. As can be observed when we use
tighter deadlines ([5,25] and [10,30]), where tasks may receive
deadlines which are 200% and 400% stricter than before, all
approaches reduce their efficiency. However, CRITICAl is the
least affected approach and the reason for the unsuccessful
tasks in these deadlines is the lack of available workers that are
able to execute tasks in such a short deadline. However, even
with the tightest deadline, our approach manages to process
successfully more than half of the tasks, while the REACT
approach processed successfully 15.8% of the tasks and the
traditional approach only 9.3%. On the other hand, with a lax
deadline (40-80), where most of the workers can process the
tasks on time, all of the approaches increase their efficiency.
As expected, CRITICAl had the least increase, since it was
already close to one, however, it manages to reach 87.5%.

VI. RELATED WORK

The popularity of crowdsourcing systems has led to the
development of several commercial crowdsourcing platforms,
including AMT [1], CrowdFlower [2] and microWorkers [3].
Additionally, applications have began to utilize crowdsourc-
ing systems e.g., Waze[8] is a community-driven navigation
application for mobile phones, where users voluntarily share
location-based data, to provide real-time traffic updates.

Authors in [14] propose a fact-finding approach to deter-
mine user reliability, to allow applications to process streaming
data efficiently. They develop a recursive Expectation Maxi-
mization approach that adaptively processes the newly updated
data. However, CRITICAl estimates the workers reliability and
determines the real-time capability of the workers as a group,
to process a task, at runtime. Venetis et al [35] utilize Max
Algorithms to determine the best answer in crowdsourcing
environments. They consider the trade-off between the quality,
the monetary cost and the execution time of the steps for their
algorithm, rather than considering the execution time of the
tasks. They also assume that workers should provide series of
answers for a task, while we determine the most suitable group
of workers that provides answers with high confidence without
the need to retrieve series of answers to evaluate them.

Karger et al [18] provide a task allocation scheme based on
random graphs that minimizes the number of task assignments
subject to an overall reliability constraint. However, we have
shown that our approach outperforms adaptive random assign-
ments. In [16], they present a two-phase voting-based approach
to maximize the accuracy of the results by dynamically select-
ing multiple users to process them, while we select workers
based on their reliability to reduce the cost of the multiple
assignments. In [17] they propose a task assignment model,
similar to a simplified version of the online adwords problem,
where the worker’s skill remains unknown. In [27] they present
a budget allocation algorithm for tasks with different costs
and they aim to minimize the total error of the answers,
with respect to a budget limit. However, they consider the
reliability of the users executing the tasks unknown. Authors
in [9] propose an approach to allocate workers that minimize
the error to receive a correct answer subject to a constrained
budget. In [20] they also model the assignment problem as
a bipartite graph and propose techniques based on budget



feasible mechanisms. Nevertheless, none of these approaches
considers the real-time constraints imposed from the tasks.

Authors in [19] present a route recommendation system,
that utilizes crowdsourcing. Their worker selection process,
considers the response time and the familiarity of the worker.
However, the response times do not depend on the workers’
history and the selection considers each worker individually.
Khazankin et al [15] propose a task assignment model that
depends on the workers’ “quality” and suggest that task
assignment should depend on the workers’ availability, to
overcome deadline issues. CRITICAl improves that, since it
considers the worker profiles and uses real time measurements
for the estimation of deadline misses. In our previous work
[33], we also study the task allocation to workers, in terms of
satisfying real-time requirements. However, that work focused
in assigning tasks to individual workers and as we prove in
the experiments, the synergies developed in groups of workers
need a different approach to assign the tasks efficiently.

Alt et al [36] implement a prototype for providing location-
based tasks to the mobile crowd. They exploit the GPS location
to enable workers select nearby tasks, while in CRITICAl this
is achieved implicitly since the workers would be assigned to
tasks that reside in the same area. They also claim that the
task solutions need to be submitted within a time period, but
they do not propose such a solution, as we do in CRITICAl. In
[28], they aim to assign tasks to the closest spatially workers
and propose three approaches for the problem. Nevertheless,
they do not consider the characteristics of the workers but they
assume that the majority of the workers can be trusted.

VII. CONCLUSIONS

In this paper we develop a crowdsourcing system called
CRITICAl and solve a task assignment problem, that effi-
ciently determines the most appropriate group of workers to
assign for each incoming task, so as to satisfy application real-
time demands and to return high quality results under budget
constraints. Our detailed experimental results show that our
system effectively meets application requested demands, has
low overhead, and is highly efficient as it improves the amount
of tasks processed under the defined constraints over 71%
compared to traditional approaches.
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