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Abstract—Real-time, cost-effective execution of ”Big Data”
applications on MapReduce clusters has been an important goal
for many scientists in recent years. The MapReduce paradigm
has been widely adopted by major computing companies as
a powerful approach for large-scale data analytics. However,
running MapReduce workloads in cluster environments has
been particularly challenging due to the trade-offs that exist
between the need for performance and the corresponding budget
cost. Furthermore, the large number of resource configuration
parameters exacerbates the problem, as users must manually tune
the parameters without knowing their impact on the performance
and budget costs. In this paper, we describe our approach to cost-
effective scheduling of MapReduce applications. We present an
overview of our framework that enables appropriate configura-
tion of parameters to detect cost-efficient resource allocations.
Our early experimental results illustrate the working and benefit
of our approach.

I. MOTIVATION

In recent years we observe an increased demand for
processing large amounts of data. Systems such as Google’s
MapReduce [1] and Spark [2] have quickly become de facto
big data processing frameworks as they provide powerful and
cost-effective approaches. In particular, Hadoop [3], which is
MapReduce’s most commonly used open-source implementa-
tion, can scale out to thousands of nodes and process petabyte
data. Due to its high scalability and performance, Hadoop
has gained much popularity and is used by many compa-
nies, including Amazon [4] and Facebook [5] for running
their applications on clusters. For example, Facebook collects
15 TeraBytes of data each day into its PetaByte-scale data
warehouse, applying ad hoc analysis and business-intelligence
applications utilizing Hadoop [6].

As MapReduce clusters are increasingly shared among
multiple users who concurrently submit their MapReduce
jobs, cloud providers author users control over the amount of
resources to be used by charging them based on the processing
and storage resources they bind [7]. For example, in Amazon,
users are charged based on the hours they bind their allocated
Virtual Machines and the amount of I/O operations performed
by their applications [4]. Thus, a challenging problem for the
user is to efficiently decide how many resources to allocate
for her jobs in order to satisfy her requirements (e.g. mini-
mize jobs’ makespan) without overspending. The problem is
exacerbated by the fact that the MapReduce job performance
can be affected by a wide range of configuration parameters
[8]. Currently the burden of configuring these parameters falls
on the user who submits the jobs.

Work has been done with respect to allocating resources
to a user’s jobs, trying to satisfy each job’s execution time
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Fig. 1. Budget-Execution Time Trade-off Problem

requirements [9]. However, this scheme focuses on single jobs
and is not optimized when multiple jobs execute concurrently.
Our previous work [10] proposed a laxity-based scheduler for
specifying the execution order of jobs but did not consider
the user’s spending budget. There has also been some recent
proposals regarding the automatic parameter tuning in Hadoop,
specifically Starfish [8] and MRTuner [11]. However, these
approaches do not examine the implications when multiple
jobs execute concurrently in the cluster (i.e. how map/reduce
slots should be allocated between these jobs to satisfy both
budget and performance constraints). In this paper, we describe
our approach to cost-effective scheduling of MapReduce appli-
cations. We present an overview of our framework that enables
appropriate configuration of parameters to detect cost-efficient
resource allocations. Our early experimental results illustrate
the working and benefit of our approach.

II. FRAMEWORK DESCRIPTION

A MapReduce job or application is modelled as a sequence
of two computational phases, the map and the reduce phase.
Each phase consists of multiple tasks that execute in parallel.
Tasks are modelled as follows: map(k1, v1) ⇒ [k2, v2] and
reduce(k2, [v2]) ⇒ [k3, v3]. . Map tasks take as input (k1, v1)
pairs and return a list of intermediate (key,value) pairs of
possibly different types, k2 and v2. The values associated
with the same key k2 are grouped together into a list and
are processed by the appropriate reduce task. The execution
time of a job is equal to the sum of the execution times of the
map and the reduce phases. The maximum number of map and
reduce tasks that can run concurrently in the cluster depends
on the available resources (i.e. map/reduce slots). Usually users
submit multiple jobs concurrently (i.e. MapReduce workload)
for execution in the cluster.
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Fig. 2. Framework’s Overview

Based on the amount of resources (i.e. map/reduce slots)
that the jobs reserve, the user is charged with the corresponding
monetary cost. We define the cost similarly to [7] as the
number of reserved slots multiplied by the per slot monetary
cost (i.e. a metric defined by the cloud provider). Furthermore,
users want to minimize the end-to-end execution time (i.e.
makespan) of their workload. Therefore we have a a multi-
objective optimization problem that needs to be solved, as
we have to minimize the workload’s makespan and at the
same time minimize their spending budget. In Figure 1 we
illustrate the problem with a synthetic MapReduce workload.
Our workload comprised of 5 synthetic Yahoo jobs with their
characteristics defined in [12]. We assumed that the user’s
budget is between 10$ and 40$. As you can see in Figure
1 based on the different combinations of map/reduce slots’
allocations we end up with different budget and workload’s
makespan. Assigning more slots to the jobs decreases the
observed makespan but at the same time leads to an increase
in the user’s spending budget.

We illustrate the high level overview of our framework
in Figure 2. The user provides the range of budget she is
willing to spend for the execution of a set of jobs, and then the
system suggests resource allocation plans (i.e. map/reduce slots
allocations) that are optimal in regards to the budget/makespan
trade-off. Furthermore, our framework examines the impact of
the reduce task configuration parameter and adjusts it to further
minimize the job’s execution time. We illustrate the benefits
of tuning this parameter in Figure 3 where we display the
impact of the reduce tasks in the observed execution time of
a Sorting job running in our 7-VM cluster which consists of
14 map and 14 reduce slots. The job sorts 5 GB of randomly
generated data. One can observe that by increasing the reduce
tasks beyond a certain value provides small benefits. In this
case our framework would detect that the best solution is when
we use the same number of reduce tasks as the available reduce
slots and would apply this setting to the user’s job.

Our system applies a slots’ allocation by initiating a sepa-
rate scheduling queue for each job. Each queue will have the
configured number of map/reduce slots for the corresponding
job (i.e. Queues Creator in Figure 2). This way we limit the
slots used by each job only to its allocated value. We use
Hadoop’s FAIR [3] scheduler for the actual execution of the
jobs in the cluster. The scheduler assigns each job to its queue,
so all jobs can execute concurrently, utilizing their allocated
map/reduce slots. We do not apply the default Hadoop FIFO
scheduler as it does not offer a way to limit the resources
used by each job, but rather assumes that all the resources are
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available, so a job may occupy all the slots in the cluster. Our
approach can be easily extended for other Hadoop queue-based
schedulers such as the Capacity Scheduler [3].

III. CONCLUSIONS

In this work, we present a novel framework that balances
the trade-off between budget and performance for concurrently
running MapReduce applications. Our initial experimental
results indicate the benefits of our proposal by adjusting basic
configuration parameters.
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