
This paper is included in the Proceedings of the
11th International Conference on Autonomic Computing (ICAC ’14).

June 18–20, 2014 • Philadelphia, PA

ISBN 978-1-931971-11-9

Open access to the Proceedings of the
11th International Conference on
Autonomic Computing (ICAC ’14)

is sponsored by USENIX.

Real-Time Scheduling of Skewed MapReduce Jobs
in Heterogeneous Environments

Nikos Zacheilas and Vana Kalogeraki, Athens University of Economics and Business

https://www.usenix.org/conference/icac14/technical-sessions/presentation/zaheilas

USENIX Association 11th International Conference on Autonomic Computing 189

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous
Environments

Nikos Zacheilas and Vana Kalogeraki
Athens University of Economics and Business

Athens, Greece
zaheilas@aueb.gr, vana@aueb.gr

Abstract

Supporting real-time jobs on MapReduce systems is par-
ticularly challenging due to the heterogeneity of the en-
vironment, the load imbalance caused by skewed data
blocks, as well as real-time response demands imposed
by the applications. In this paper we describe our ap-
proach for scheduling real-time, skewed MapReduce
jobs in heterogeneous systems. Our approach comprises
the following components: (i) a distributed scheduling
algorithm for scheduling real-time MapReduce jobs end-
to-end, and (ii) techniques for handling the data skew-
ness that frequently arises in MapReduce environments
and can lead to significant load imbalances. Our detailed
experimental results using real datasets on a truly hetero-
geneous environment, Planetlab, illustrate that our ap-
proach is practical, exhibits good performance and con-
sistently outperforms its competitors.

1 Introduction

Today, we are experiencing increased demand for pro-
cessing large amounts of data-intensive tasks. Systems
such as IBM’s InfoSphere BigInsights [20], Amazon’s
DynamoDB [2] and Google’s MapReduce [10], have
rapidly become de facto big data processing frameworks.
These systems need to be fast, scalable and highly avail-
able. In particular, Google’s MapReduce [10] framework
has been proposed as a powerful and cost-effective ap-
proach for massive-scale processing. It has been utilized
by some of the major computing companies, including
Amazon, eBay, Facebook, IBM, LinkedIn, Twitter and
Yahoo!, via its open-source implementation Hadoop [17]
in a wide variety of application domains including real-
time analysis of sensor data streams, real-time stock mar-
ket data analysis and financial trading applications.

The MapReduce model breaks intense processing jobs
into smaller tasks that run in parallel on multiple ma-
chines. Jobs are split into two stages of processing, map

 0

 1000

 2000

 3000

 4000

 5000

 6000

Pa
rti

tio
ns

 S
iz

es
 (K

B)
Tasks Ids

(a) Partition Sizes Processed Per
Reduce Task

 0
 100
 200
 300
 400
 500
 600
 700
 800

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Tasks Ids
(b) Execution Time Per Reduce
Task

Figure 1: Impact of skewed partitions on reduce tasks’
execution times

and reduce: input data are processed by tasks comprising
the map phase, generating intermediate (key, value) pairs.
Different values corresponding to the same key are then
aggregated, and each key along with its associated values
are transmitted to the reduce phase for further data pro-
cessing. The partitioning of the intermediate (key,value)
pairs to the reduce tasks is based on a partitioning func-
tion, which in most cases is a simple hash function. How-
ever, partitions (i.e., the set of intermediate (key,value)
pairs that will be processed by the same reduce task) can
be of varying size, leading to significant data skewness
challenges and critical delays on the execution times of
the corresponding reduce tasks.

We use the following example to illustrate the load
imbalances that can occur due to skewness (i.e., parti-
tions of varying sizes) as well as the effect on the exe-
cution times of the tasks, when processing skewed data-
intensive MapReduce tasks. Figure 1 illustrates the dis-
tribution of the partitions’ sizes and the corresponding
execution times of the reduce tasks for a MapReduce job
that processes a Youtube social graph (detailed informa-
tion about the experiment can be found in the experimen-
tal evaluation section). The experiment run on Planetlab,
using 82 processing cores and applying the hash function
(hashcode(key)modR, where R is the number of reduce
tasks) proposed in the original MapReduce framework
[10]. The figure clearly depicts that the exhibited skew-
ness of the partition sizes affects the execution time of
reduce tasks due to the uneven distribution of the data.

1

190 11th International Conference on Autonomic Computing USENIX Association

The problem is further exacerbated by the fact that
jobs often have real-time response requirements, in the
form of deadlines. As was pointed out by a recent study
on Facebook’s and Yahoo!’s production workload traces,
95% percentage of their production jobs are short run-
ning with an average real-time response requirement of
30 seconds [6], [30]. Timely execution of the tasks is a
challenging problem due to the large heterogeneity and
resource sharing in the nodes; in a shared processing en-
vironment, the execution times of the jobs are greatly af-
fected by multiple tasks invoked concurrently and asyn-
chronously by many jobs that are executed on the same
computing resources. Conditions such as slow or misbe-
having tasks (i.e., due to hardware failures or misconfig-
uration), can severely affect the performance of the entire
jobs [10]. Nevertheless, to make the deployment of these
systems practical, the jobs must be able to operate au-
tonomously in highly dynamic environments, and meet
real-time demands, even under load spikes and unpre-
dictable initiation of new tasks.

Current scheduling techniques in the Hadoop MapRe-
duce framework (the most widely used MapReduce im-
plementation) are not adequate, as they either adopt Fair
scheduling [19] or Capacity scheduling [18]. These
strive to balance the load across the resources rather
than meeting real-time demands of the jobs. Recent
approaches for scheduling MapReduce jobs include the
LATE [42] and EDF [39] schedulers, however both ap-
proaches focus on scheduling and do not examine the im-
pact of skewed data on the execution time of jobs. With
respect to the skewed partitions problem, work has been
mainly done by [14] and [27]. The first aims at distribut-
ing similar sized partitions among the available reduce
tasks, but in heterogeneous environments this approach
can lead to the assignment of large-size partitions to slow
nodes. Skewtune [27] on the other side, proposes the
repartitioning of heavily skewed partitions, however the
overhead of such schemes can degrade the performance
of short running jobs. It is clear that none of the exist-
ing works offers a unified solution for the two problems
but rather examines them separately without taking into
account their interaction.

In this work, we present DynamicShare, our sys-
tem for supporting the execution of real-time, skewed
MapReduce jobs in heterogeneous environments. Our
goal is to address the joint problem of: (a) scheduling
MapReduce jobs dynamically to maximize the proba-
bility of meeting their real-time response requirements,
and (b) effectively handle the issue of data skewness.
We focus on the execution of short running jobs, simi-
lar to Facebook Corona [37], (typical queries are: iden-
tify common friends in Facebook), which execute in the
order of seconds. To our knowledge this is the first pro-
posal towards a unified solution to the stated problem.

Our approach makes the following contributions:

1. We present a distributed scheduling algorithm for
scheduling jobs end-to-end. DynamicShare uses
measurements of laxity values of the tasks, pro-
jected latencies and measurements of resource loads
to adjust their scheduling order to compensate for
queuing delays, estimates the execution times of the
tasks using a non-parametric regression technique
and identifies overloaded nodes early on through a
Local Outlier Factor algorithm.

2. To handle the data skewness that arises in the reduce
phase, we design two algorithms, a simple but effi-
cient Simple Partitions’ assignment algorithm that
considers the sizes of the partitions and the variable
processing capabilities of the nodes to make an ap-
propriate placement, and a Count-Min sketches al-
gorithm that enables an even better distribution of
the partitions but at the expense of additional execu-
tion time for the partitions’ assignment procedure.

3. We have implemented and evaluated DynamicShare
on Planetlab, a truly heterogeneous environment,
using 82 processing cores in total. Our experi-
mental results utilizing two different datasets, from
Youtube and Twitter networks, illustrate that our ap-
proach is practical, meets jobs’ real-time response
demands, effectively addresses the issue of highly
skewed data, and outperforms its competitors.

2 System Model and Architecture

2.1 System Model
A MapReduce job is modelled as a sequence of invoca-
tions of M map and R reduce tasks (shown in Figure 2).
Tasks are modelled as follows: map(k1,v1)⇒ [k2,v2] and
reduce(k2, [v2])⇒ [k3,v3] . Map tasks take as input (k1,v1)
pairs and return a list of (key,value) pairs of possibly dif-
ferent types, k2 and v2. The values associated with the
same key k2 are grouped together into a list and passed
as input to the appropriate reduce task, which emits ar-
bitrary (key,value) pairs of a final type, k3 and v3. All
(k2, [v2]) pairs processed by the same reduce task on a
cluster’s node, are considered a partition. Recent works,
such as [14], suggest the usage of a larger number of par-
titions compared to the number of reduce tasks to mini-
mize the skewness of the intermediate data. Our frame-
work follows this approach.

We consider soft real-time MapReduce jobs that are
aperiodic and, thus, their arrival times are not known a
priori. We focus on applications with intensive reduce
phase and limited network transfers. Each job j is as-
sociated with a number of parameters: Deadline j is the

2

USENIX Association 11th International Conference on Autonomic Computing 191

Figure 2: MapReduce Computation Model

time interval, starting at job initiation, within which job j
must complete (deadline values are typically assigned by
a system administrator based on the real-time demands
of the jobs, determining the appropriate deadline for the
job is outside the scope of the paper). Pro j exec time j is
the estimated amount of time required for the job to com-
plete, this includes communication and queueing times
at the system resources. Every job j should execute
within its Deadline j, that is, the sum of the computation
times and the corresponding communication times of all
tasks invoked by the job (denoted as projected end-to-end
execution time) should be smaller than the Deadline j.
MapReduce jobs are data-intensive jobs, thus, the end-
to-end execution time is mainly attributed to the execu-
tion times of the tasks and the communication times are
negligible. Laxity j is defined as the difference between
the Deadline j and Pro j exec time j, and is considered as
a measure of urgency for the j job. The laxity value for
each job is updated dynamically during execution; and
determines the order with which the job’s tasks will be
scheduled at the system resources. Finally, split size j is
the user-defined size of a split input file for job j.

Each task t of job j is described with the following
metrics: cpui,t and memoryi,t represent the average per-
centage of CPU and memory required for task t to exe-
cute on Worker i. mi,t is the estimated mean execution
time of a map task on Worker i. This includes the re-
quired time to read the total amount of input data, execute
the map method and transmit the intermediate pairs to the
reduce tasks. Similarly, ri,t depicts the estimated execu-
tion time of a reduce task, this corresponds to the time
required for grouping (key,value) pairs with the same
key into a single (key,list o f values) pair, plus the re-
quired time for executing the reduce method. Finally
partitions sizei,t holds the total size of the partitions that
are assigned on Worker i for a reduce task t.

2.2 DynamicShare Architecture
The DynamicShare architecture (shown in Figure 3)
comprises a single Master node and multiple Worker
nodes. The Master receives MapReduce jobs, along with

Master

Worker

Split
File

TaskScheduler
Laxity-Based
Scheduling

M M

R R

Monitor
Thread

Execution
Times

Estimator

Laxity
Calculation

Task
Distribution Partitions’

Assignment
Monitor
Center

LOF

1.

2.

3.

4.

4.

5.

6.

7.

8.

9.

Laxity
values

Partitions’
Sizes

Assignment

Split
File

Figure 3: DynamicShare Architecture

their corresponding deadline requirements. It is respon-
sible for the assignment of the map and reduce tasks to
Workers and the monitoring of the currently executing
jobs. For each submitted job, the Master estimates the
execution times of the map and reduce tasks in order to
compute the execution time of the whole job and its cor-
responding laxity value. This value will be used by the
TaskScheduler component at each Worker when schedul-
ing the job’s tasks (Section III). The Master is responsi-
ble to keep track of current resource usage statistics (i.e.,
CPU, memory) along with their respective laxity values,
as reported by the Monitor components at the individ-
ual Worker nodes during task execution. This informa-
tion will also be used by the anomaly detection algorithm
to identify overloaded nodes. The Master invokes the
partitions’ assignment algorithm to decide how to dis-
tribute the generated partitions to the available reduce
tasks (Section IV). Finally, the input data file for each
job is uploaded to the cluster and distributed as equal
sized split files to the Workers for processing by the map
tasks; the size of the split file is typically user-defined.
Techniques such as the one proposed in [22] can further
enhance our framework to distribute the split files based
on the processing capabilities of the nodes in the cluster.

3 Dynamic Real-Time Scheduling of
MapReduce Jobs

We develop a distributed scheduling approach that dy-
namically adjusts the execution of jobs on the system re-
sources and measures the impact of overloaded nodes on
meeting their end-to-end real-time demands. It consists
of the following components: (a) A model for estimating
the execution times of tasks based on a commonly used
non-parametric regression technique, k-Nearest Neigh-
bor (k-NN) smoothing. (b) A distributed least laxity
first scheduling algorithm for scheduling jobs end-to-
end, that uses measurements of the laxity values of the
tasks to adjust their scheduling order to compensate for
queuing delays at Workers. (c) Early detection of over-
loaded nodes via a Local Outlier Factor algorithm.

3

192 11th International Conference on Autonomic Computing USENIX Association

3.1 Estimating Execution Times of Tasks

To estimate the execution times of the entire jobs, the
fundamental idea is to compute an approximation of the
execution times of the map and reduce tasks and use this
approximation in the computation of the execution time
of the entire job. Techniques for estimating the execution
time of MapReduce jobs, such as building job profiles
based on previous execution times [38] or using debug
runs before the actual execution [29] have been proposed
for homogeneous environments, but without examining
the implications of the problem in a heterogeneous set-
ting, where the execution times of the tasks may vary.

We propose an estimation model that considers both
the resource requirements of the newly submitted tasks
and the previous task runs. There are two main ap-
proaches to address this: with parametric or non-
parametric techniques [40]. For each map task we main-
tain a vector −→x of the task parameters as follows: −→x =
(split size j,cpui,t ,memoryi,t) Similarly, for reduce tasks
we have: −→x = (partitions sizei,t ,cpui,t ,memoryi,t)
The cpui,t ,memoryi,t requirements of a newly submitted
task are estimated via a histogram based approach similar
to [25]. This approach is based on past runs. It distributes
the processing requirements of previous tasks into his-
togram bins and utilizes the mean of the most populated
bin for estimating the requirements of the newly issued
task. If we model the execution time using parametric
regression, the functional form of the m(−→x) is assumed
known and a technique like Least Squares can be ap-
plied for the calculation of the polynomial coefficients.
However, in the case of a highly dynamic environment,
like our setting, computing the execution time of tasks
via a polynomial function is not efficient [21]. Thus, in
such environments non-parametric techniques are more
appropriate.

In non-parametric regression no assumption can be
made about the functional form of m(−→x), therefore the
estimation is regarded as data driven because it depends
only on previous task runs. All non-parametric regres-
sion techniques are modelled by the following equation:

m̂(−→x) =
1
n

n

∑
i=1

Wi(
−→x)yi (1)

where Wi(
−→x) is a weighting sequence and yi the exe-

cution time of a previously issued task. Essentially, the
m̂(−→x) can be considered as the weighted average of n
previous task runs. Special care must be given to the
number of previous runs that will be used. Too many
past runs can lead to overly biased results, on the other
hand few examples make the curve too ”noisy”. In our
previous works [4], [23] we have shown that the number
of runs to use depends on the job’s characteristics.

The non-parametric regression technique we decided
to implement for our estimation problem was k-Nearest
Neighbor (k-NN) smoothing. In k-NN smoothing, the es-

timation of m̂(−→x) is based on the k past runs that are clos-
est to the given vector −→x . Utilizing a subset of the past
runs, instead of all n past runs, is important because only
those that have similar resource requirements with the
currently examining task are considered in the estima-
tion, and thus a better prediction is possible. We use the
Euclidean distance of vectors to identify the closest past
runs. In order to achieve better estimations, the impact
of the previous runs on the estimation is weighted based
on their distance from the examining vector, with the
ones being closer receiving higher weights. A weight-
ing function with several optimality properties is the
Epanechnikov kernel K(d), where: K(d) = 3

4 (1− d2),
with |d| < 1. The d parameter, in our case is the calcu-
lated Euclidean distance of the vectors. The choice of
the kernel function is not significant for the results of the
approximation [33]. The Epanechnikov kernel function
gives more weight to previous runs that are closer to the
examining task’s vector parameters. In order to be uti-
lized by the estimator, the function must be scaled and
normalized. We used the following weighting function:

Wi(
−→x) =

{KR(|−→x −−→xi |)
f̂ (−→x)

if i ∈ N−→x

0 otherwise
(2)

where N−→x = {i: −→xi is one of the k nearest neighbors of
−→x }, KR(d) is the scaled Epanechnikov kernel function

and is given by the following equation: KR(d) =
1
R

K(d
R).

The kernel is scaled by the factor R which is defined as:
R = max(|−→x −−→xi |), i ∈ N−→x . Finally the f̂ (−→x) factor in
equation (2) is a normalized factor, and is given by the
following formula: f̂ (−→x) = 1

k ∑−→xi ∈N−→x
KR(|−→x −−→xi |).

One important aspect of the algorithm is the choice
of the value for k that will determine the number of
past runs to be taken into account during the estimation.
Too many examples can cause an increase on the bias
E{m̂(−→x)−m(−→x)}, while few previous runs may lead to
large variance E{m̂2(−→x)}. The value of k depends on
the number n, so it must be adjusted accordingly. It has
been proven [40] that by increasing k in proportion to n

4
5 ,

the k-NN technique achieves a constant balance between
the variance and the bias.

3.2 Least Laxity First Scheduling

We develop a dynamic, distributed least laxity first
scheduling scheme that determines the order of execu-
tion of the tasks based on their urgencies and timing con-
straints. The Least Laxity First Scheduling (LLF) algo-
rithm has been successfully employed in distributed and
mobile real-time systems such as in [12], [24]. In LLF
each job is associated with a laxity value, that represents
a measure of urgency for the job and is used to order the
execution of the tasks on the Workers. Given the dead-

4

USENIX Association 11th International Conference on Autonomic Computing 193

line Deadline j and Pro j exec time j for job j, we com-
pute Laxity j as:

Laxity j = Deadline j −Pro j exec time j, (3)

The projected execution time of j job is computed
based on its estimates of the execution times of the
map and reduce tasks, as follows: Pro j exec time j =
max{mi,t , ...,mk,t} + max{rz,t , ...,rl,t}, where we con-
sider the maximum execution times of the map and re-
duce tasks in the above computation since all tasks of
the same phase run in parallel. The laxity value for each
job is computed initially by the Master node and is used
when scheduling the tasks of the job at each node. The
closer the Laxity j value to zero, the more probable is for
the job to miss its deadline; a negative value indicates
that the deadline will be missed.

Tasks are ordered in the TaskScheduler at each node,
based on the laxity values of the jobs that invoke them.
The advantage of LLF compared to other scheduling ap-
proaches such as Earliest Deadline First (EDF) [39] and
Hadoop’s FIFO and FAIR scheduler, is, that, LLF is a dy-
namic scheduling algorithm that allows for compensat-
ing for queueing delays often experienced in distributed
settings or that were mis-calculated at previous nodes.
In LLF the task with the smallest laxity value has the
higher priority. The laxity value of a job is adjusted as the
tasks invoked by the job execute on the system resources.
To avoid constantly updating the laxity values for a job,
they are adjusted only when new tasks are inserted into
the TaskScheduler’s queue or when tasks finish execu-
tion or miss their deadlines. As the laxity values of the
jobs are updated, the task belonging to the job with the
smallest laxity value will execute next; if a job has neg-
ative laxity value this job has been estimated to miss its
deadline and thus its tasks will be processed only when
the TaskScheduler has pending tasks that all have missed
their deadlines. That means a task with negative laxity
will never preempt tasks with positive laxity values.

3.3 Identifying Overloaded Nodes

Because nodes’ resource capacities are not directly cor-
related to the amount of data they are assigned for pro-
cessing, it is possible that the data blocks are distributed
unproportionally to the nodes. This may result in Work-
ers becoming overloaded and not capable of completing
their assigned tasks within the jobs’ deadlines.

To identify overloaded Workers early on, we use the
Local Outlier Factor (LOF) algorithm [5] on the lax-
ity values of tasks of the same job that run on different
Workers. LOF is a metric of anomaly detection that can
be applied to a set and identify possible outliers. We
consider as outliers, laxity values that significantly differ
from the rest. Our goal is to proactively identify over-

loaded Workers before the laxity value of the correspond-
ing job becomes negative.

The main idea of the LOF algorithm is to compare
the local density of a point’s neighbourhood with re-
spect to the local density of its neighbours, seeking one
or more points with significant difference from the rest.
Thus, we compare the laxity values for the same job
on the different Workers that execute the tasks of the
job. More formally: Let l distance(laxA) be the dis-
tance of a laxA to the l nearest neighbour, laxA will be
the laxity value of a job j that runs on a Worker that
can possibly be overloaded. We denote the l nearest lax-
ity values as Nl(laxA). This distance is used to define
the reachability distance metric: reach dl(laxA, laxB) :=
max{l distance(laxB),d(laxA, laxB)}, where laxB will
be the laxity value of the same j job on a different
Worker. The reachability distance of a value laxA
from laxB depicts the true distance of the two values
(d(laxA, laxB)), but also at least the l distance of laxB.
The usage of this distance achieves more stable results
as shown on [5]. The local reachability density of laxA
is defined by:

lrdl(laxA) :=
|Nl(laxA)|

∑
laxB∈Nl(laxA)

reach dl(laxA, laxB)
(4)

and intuitively is the inverse of the mean reachability dis-
tance of laxA from its neighbouring laxity values. The
local reachability density is then compared with those of
the neighbours using the following equation:

LOFl(laxA) :=

∑
laxB∈Nl(laxA)

lrdl(laxB)

|Nl(laxA)| ∗ lrdl(laxA)
(5)

which is the average reachability density of the neigh-
bours divided by laxA’s own local density. A LOF value
below 1 indicates a denser region, which would dictate
an inlier, while values significantly greater than 1 indi-
cate outliers.

The Master utilizes formula (5) to compare the laxity
values of the jobs running in the system, based on the
laxity values reported by the Workers. If a value greater
than 1 is detected, the corresponding node is marked as
overloaded, giving the option to execute some of its tasks
on a different Worker.

4 Skewed data

As described earlier, the MapReduce framework is sus-
ceptible to severe load imbalances caused due to the
skewness exhibited in the partitions. Recall, that in the
original MapReduce framework [10], a partition consists
of all the intermediate pairs that give the same result
when the partitioning function is applied to them. Each
partition is then assigned to a different reduce task. The
most commonly used partitioning function, utilized also

5

194 11th International Conference on Autonomic Computing USENIX Association

in Hadoop, is hashcode(key) mod R. In our system two
types of skewness frequently occur:
Skewed Key Frequencies. This occurs when some
keys appear more frequently in the intermediate pairs,
thus the partition they are part of becomes extremely
large. This issue can be solved by putting more work
on the map tasks, by aggregating the values of the same
key, and creating intermediate pairs in the form of (key,
list of values).
Skewed Tuple Sizes. This applies to (key, value) pairs
with complex processing structures on the value field.
For example in the Twitter social network there is a large
assymetry in the types of users and their friendship lists,
as a result, pairs have varying sizes, depending on the
number of objects that occupy their lists. So this case
applies to partitions for which the (key, list of values)
pairs contain lists with large amount of data.

We focus on the Skewed Tuple Sizes problem, as it has
the most significant impact on the execution time of re-
duce tasks. Recent works [14], [15], [26] have shown
that solving this problem is not trivial; these primarily
aim at partitioning the data in such a way so that all re-
duce tasks finish their processing in similar times.

We propose an approach that uses more partitions than
the number of reduce tasks and takes into account the
partitions’ sizes and our estimates on the task execution
times on Worker nodes, assigning the partitions in such
a way that all reduce tasks contribute to the data pro-
cessing, according to their processing capabilities. We
propose an approach that puts more work on powerful
nodes, assigning multiple partitions on them, while ex-
ploiting the slower nodes by assigning them light-sized
partitions.

4.1 Partition Size Calculation

We exploit two approaches to calculate the size of the
partitions, the first utilizes the amount of values cor-
responding to the keys of a partition (similar to [14]),
while the second uses the Count-Min Sketches [9] data-
structure which enables the usage of more hash functions
in the calculations.
Simple Partitions. Assume we have p partitions, with
p ≥ R. Let sm(k) be the number of values in the
list of values that corresponds to key k, on a map task
m, m ∈ {0, ...,M}. We define as Pm(i), i ∈ {0, ..., p} the
set that contains the keys of the i-th partition on the m-th
map task. Then the total size for this partition on map
task m will be: Sm(i) = ∑

k∈P(i)
sm(k).

Each map task calculates the sizes of all generated parti-
tions and sends them to the Master node, who is responsi-
ble to aggregate these values for each partition in order to
calculate its total size. So the Master computes for each

partition the following value: S(i) = ∑
m∈{1,...,M}

Sm(i), i =

{0, ..., p}. These values will be the partitions’ sizes and
will be utilized in the dynamic partitioning assignment
algorithm (discussed in the next section).
Count-Min Sketches. Our second technique for es-
timating the partitions’ sizes is based on the use of
sketches. A sketch is a synopsis data-structure utilized
extensively in query-optimization [11]. It provides the
capability of capturing the basic features of a dataset by
monitoring a significant subset. We use a special type
of sketch, called Count-Min Sketch [9], which is mainly
used for frequency counting in data streams [8].

Each map task creates a local sketch which can be seen
as a two-dimensional array, sketchm[i, j], that stores in-
formation regarding the generated key-value pairs. Each
row of the array corresponds to a different hash function
that can be used for the distribution of the intermediate
key-value pairs to the partitions, and each column cor-
responds to a different partition. So, suppose that we
have d rows, H = {hi, i = 1, ...d} be the set of the cho-
sen hash functions, and p columns, the same number as
the partitions that will be used. It is recommended in
[9] that the chosen hash functions need to be pairwise-
independent, so we generate d hash functions in the form
of f (x) = (a ∗ x+ b) mod pr, where a,b are random in-
tegers and pr a prime number.

When a new key-value pair has been generated,
then each of the d hash functions are applied to it,
and for the j corresponding position in the array, a
counter increases by one, because one more value will
be added to this partition. Initially: sketchm[i, j] =
0,∀i ∈ {1, ...,d}, j ∈ {1, ..., p}. So when all the interme-
diate pairs have been generated, we have:

sketchm[i, j] = ∑
∀k:hi(k)= j

sm(k),∀i ∈ {1, ...,d}, j ∈ {1, ..., p}

(6)
When all map tasks have finished, the generated sketches
are emitted to the Master for the creation of the global
sketch array. The global sketch will be also a d× p array,
and will be populated using the following equation:

sketch[i, j] =
M

∑
m=1

sketchm[i, j],∀i ∈ {1, ...,d}, j ∈ {1, ..., p}

(7)
This global sketch holds all the information about the
partitions’ sizes, and will be utilized from the partitions’
assignment algorithm.

4.2 Dynamic Partitioning Algorithm

Once the partitions sizes have been estimated, the goal of
the dynamic partitioning algorithm is to decide the place-
ment of the partitions to the corresponding reduce tasks
in a way that minimizes the execution time of the re-

6

USENIX Association 11th International Conference on Autonomic Computing 195

duce phase, thus increasing the possibility of jobs meet-
ing their deadlines.
Simple Partitions. In the Simple Partitions scheme, we
estimate the execution time of each partition assigned on
a specific reduce task, via the k-NN estimator (discussed
in Section 3.1). So, we sort the partitions with respect
to their sizes in descending order and try to find the re-
duce task with the smaller execution time. As a reduce
task might have some partitions already assigned to it,
we estimate whether the new assignment will still allow
the end-to-end execution times of the currently sched-
uled tasks to be within their deadline constraints, even if
we added the new partition. The sorting of the partitions
ensures that the most heavy-sized will be assigned to re-
duce tasks which run on Workers that exhibit the best
performance. Finally the Master returns the correspond-
ing assignment to the map tasks, in order to know where
to emit the generated partitions.
Sketch-based approach. In the Sketch-based approach,
the same procedure is applied only this time for each
row of the global sketch array. The idea is to generate
a partitions’ assignment for each of the possible hash
functions and then choose the function that achieves the
least execution time. The function’s assignment plan
will be utilized for the actual distribution of the parti-
tions. This approach is applicable because each row of
the global sketch table can be seen as a Simple Parti-
tions sizes model. The sketch-based approach adds an
additional cost in the partitions’ assignment procedure
because the partitions’ assignment algorithm must be ap-
plied for each row of the sketch array. On the other hand,
it increases the possibility of achieving a better parti-
tions’ assignment, with respect to the execution time, be-
cause more assignment plans are considered.

5 Evaluation

We have performed an extensive experimental study of
our approach on Planetlab, a fully distributed heteroge-
neous environment, using 82 processing cores in total;
one dedicated node was utilized as Master and the others
were Worker nodes executing map and reduce tasks. We
assume that the Master is failure-free.

Two different jobs were used for the evaluation of our
DynamicShare framework. The first job was a Twitter
friendship request query on 2GB of available data dur-
ing the period of Jan 1, 2013 to April 30, 2013, ex-
tracted using the Streaming API 2 of Twitter [36], where
the goal of each MapReduce job was to identify the
unique friends of each user, by examining the tagged
and mentioned parts of a tweet. We used a total of
5,900,000 tweets, distributed to fifty-nine available pro-
cessing cores, each holding about 100,000 tweets. Thus
the job consisted of 59 map and 23 reduce tasks. The

job was issued with two different deadlines, the first with
15,000 ms (strict deadline) and the second with 20,000
ms (relaxed deadline). The map tasks read the available
tweets and for each tweet a (user id, list o f f riends)
pair is emitted to the appropriate reduce tasks. The latter
receive this input and create for each user id the set that
contains his unique friends.

The second job was a friends counting application for
a 39MB Youtube [41] social graph. The goal of the
job was to calculate the number of unique friends per
user, that is, the degree of each node in the social graph.
The dataset contained 2,987,628 edges, which were dis-
tributed to the available map slots leading to approxi-
mately 45,000 edges per map task. We used the same
number of map and reduce tasks as in the Twitter job, in
order to have a fair comparison between the two applica-
tions. Youtube jobs were also issued with two different
deadlines, to take into account two different type of ur-
gencies strict and relaxed, specifically as strict deadline
we used 2000 ms, while as relaxed 4000 ms. These jobs
represent commonly issued jobs on Facebook and Ya-
hoo! [6], [30] and thus demonstrate the applicability of
our framework in a production workload.
Accuracy of Estimation Model. In the first set of ex-
periments we evaluated the accuracy of our estimation
model. In Figure 4 we illustrate the accuracy of our
model by comparing the estimated and the actual exe-
cution time of a task running on a Worker, as a function
of different numbers of previous runs used for the esti-
mation. The results are from the execution runs of one
Worker, but similar results were observed for all Work-
ers. As the figure shows, initially when we do not have
any previous run of the job’s task, the estimated execu-
tion time is larger than the actual execution time of the
task. However, as tasks execute and more observations
become available, the estimates from the k-NN estimator
are close to the real one.
Laxity Based Scheduling. In the second set of exper-
iments we evaluate the benefit of the least laxity first
scheduling (LLF) approach by measuring its ability to
meet the deadlines of the jobs. We compared our ap-
proach with the following algorithms: (i) Earliest Dead-
line First (EDF) scheduling as was proposed in [39],
where the scheduling criteria is the deadline value, tasks
with smaller deadlines will run first. (ii) First In First Out
(FIFO) scheduling, where the tasks are ordered based
on their arrival order (this is the default scheduling ap-
proach used of Hadoop), and (iii) Fair Scheduling (FAIR)
scheduling where all tasks are scheduled round-robin so
that they get equal time on the available slots. Similarly
to [30] we utilized Poisson job arrivals for simulating the
assignment of jobs to the framework. A fixed 70% per-
centage of the assigned jobs had strict deadlines, while
the rest had relaxed. This workload mix was used for the

7

196 11th International Conference on Autonomic Computing USENIX Association

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 10 20 30 40 50 60

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of examples used

Estimated Execution Time
Real Execution Time

(a) Twitter dataset

 0
 50

 100
 150
 200
 250
 300
 350
 400

 0 10 20 30 40 50 60

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of examples used

Estimated Execution Time
Real Execution Time

(b) Youtube dataset

Figure 4: Comparison of real and estimated execution
time

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8D
ea

dl
in

e
M

is
s

Pe
rc

en
ta

ge
 (%

)

Number of concurrently running jobs

LLF
EDF
FIFO
FAIR

(a) Twitter dataset

 0

 20

 40

 60

 80

 100

 2 3 4 5 6 7 8D
ea

dl
in

e
M

is
s

Pe
rc

en
ta

ge
 (%

)

Number of concurrently running jobs

LLF
EDF
FIFO
FAIR

(b) Youtube dataset

Figure 5: Comparison of percentages of deadline misses

 0

 0.5

 1

 1.5

 2

 2.5

 600 800 1000 1200 1400 1600 1800

LO
F

Laxity

Figure 6: LOF Outlier De-
tection

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 10 20 30 40 50 60 70 80 90

LO
Fʼ

s
R

eq
ui

re
d

Ti
m

e
(m

s)

Number of tasks

Figure 7: LOF Overhead

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 55 60 65 70 75 80 85R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Skewness (%)

DP without sketches
Hadoop
Skewtune

(a) Twitter dataset

 0

 500

 1000

 1500

 2000

 2500

 3000

 55 60 65 70 75 80 85R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Skewness (%)

DP without sketches
Hadoop
Skewtune

(b) Youtube dataset

Figure 8: Comparison between Hadoop, DP and Skewtune
under varying skewness

evaluation of all four algorithms.
We evaluated the ability of the scheduling algorithms

to meet the job deadlines, for varying number of concur-
rently running jobs. As shown in Figure 5, for a small
number of concurrent jobs, all algorithms are able to
meet their deadlines. The experiment shows that at all
times LLF maintains the smaller percentage of deadline
misses. LLF achieves good results even for higher num-
ber of jobs, for example when 6 jobs were issued, there
was a significant increase on the deadline misses on all
the other algorithms due to the increase of the required
execution times on some Workers, however, LLF took
into account this situation and scheduled the tasks ap-
propriately, thus maintaining few deadline misses.
LOF Evaluation. We now illustrate the working of our
anomaly detection algorithm. Due to lack of space we
present only the results for the Youtube jobs (as was ex-
pected, Twitter jobs had similar results). In Figure 6
we display a snapshot of the LOF’s execution. The al-
gorithm identifies overloaded nodes by examining each
task’s estimated laxity value, under normal operation
tasks of the same job in different Worker nodes would
have similar laxity values. In Figure 6 you see that the
majority of the tasks have laxity values close to 1650 ms.
However, five tasks have significant lower laxity values
resulting to an increase of their lo f values and the char-
acterization of the corresponding Workers as overloaded.

We also examine the overhead of the LOF algorithm
in terms of its execution time. The execution time is
mainly affected by the number of tasks that report their
laxity values and need to be examined. So we run multi-
ple Youtube jobs with varying number of tasks and report
LOF’s required execution times (shown in Figure 7). As
expected, the execution time increases with the number

of tasks. However, the figure shows that the algorithm
takes only a few milliseconds to execute, even when it
examines 84 tasks.
Dynamic Partitioning. In the last set of experiments we
point out the benefits of our proposed partitions’ assign-
ment algorithm, Dynamic Partitioning (DP), with respect
to handling skewed intermediate data on the Twitter and
Youtube jobs. To avoid the key frequencies skewness,
map tasks merge for each key all the values into a sin-
gle (key, list o f values) intermediate pair. We calculate
the skewness between the generated partitions with the

following equation: skewness = 100−100∗

p

∑
i=1

S(i)

p∗max{S(i)}
The closer the ratio is to 1 the less skewed are con-
sidered the generated intermediate pairs. Let Pr be the
set that contains the partitions processed by reduce task
r, then the total size of data processed by r will be:
S(Pr) = ∑

i∈Pr

S(i). The achieved balance in regards to the

data processed by the reduce tasks is given by the fol-

lowing formula: Balance = 100∗

R

∑
r=1

S(Pr)

R∗max{S(Pr)}
The larger the ratio, the more balanced is considered the
distribution of the partitions, because all reduce tasks
will process approximately the same amount of data.

We compare the DP algorithm utilized by our Dy-
namicShare framework to two schemes: (i) the default
Hadoop approach where the number of partitions is
fixed, and equals the number of reduce tasks, and (ii)
Skewtune [27] (Hadoop’s most popular enhancement for
the skewness issue) that uses the same setting as Hadoop
but also monitors the execution of reduce tasks. When it

8

USENIX Association 11th International Conference on Autonomic Computing 197

 0

 1000

 2000

 3000

 4000

 5000

 20 25 30 35 40 45 50R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of partitions

DP without sketches
LB without sketches

(a) Twitter dataset

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 20 25 30 35 40 45 50R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of partitions

DP without sketches
LB without sketches

(b) Youtube dataset

Figure 9: Comparison between LB and DP in regards to
execution time

 0

 20

 40

 60

 80

 100

 20 25 30 35 40 45 50

Ba
la

nc
e

(%
)

Number of partitions

DP without sketches
LB without sketches

(a) Twitter dataset

 0

 20

 40

 60

 80

 100

 20 25 30 35 40 45 50

Ba
la

nc
e

(%
)

Number of partitions

DP without sketches
LB without sketches

(b) Youtube dataset

Figure 10: Comparison between LB and DP in terms of
balance

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 25 30 35 40 45 50R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of partitions

DP without sketches
DP with sketches

(a) Twitter dataset

 0
 50

 100
 150
 200
 250
 300
 350
 400

 20 25 30 35 40 45 50R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of partitions

DP without sketches
DS with sketches

(b) Youtube dataset

Figure 11: Comparison of DP with and without sketches
in regards to execution time

 0

 1000

 2000

 3000

 4000

 5000

 20 25 30 35 40 45 50R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of partitions

DP with sketches
LB with sketches

(a) Twitter dataset

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 20 25 30 35 40 45 50R
ed

uc
e

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Number of partitions

DP with sketches
LB with sketches

(b) Youtube dataset

Figure 12: Comparison between LB and DP in regards to
execution time when sketches are enabled

detects a task which significantly lacks behind the other
normally running, it orders the slow task to repartition its
assigned data to the faster reduce tasks.

Figure 8 shows the comparison between our algorithm
(Simple Partitions schema) with the Hadoop MapReduce
approach and Skewtune. DP maintains the execution
time of the reduce phase low even when the skewness
reaches 80%. Skewtune fails to meet the performance of
our algorithm due to the extra overhead of the repartition-
ing. Although it detects the tasks that suffer from skewed
data it requires the repartitioning of their assigned data to
the other normally running tasks, a procedure that is ben-
eficial in case of long running jobs as was pointed out in
[27], but for short running jobs, such the ones we exam-
ine in our work, leads to performance degradation. We
do not consider Skewtune in case of variable number of
partitions because it works at reduce task level. Regard-
less of the chosen number of partitions to use, some of
them will be assigned in a task running on a slow node.
These partitions will have to be repartitioned thus the
overhead will be similar with the presented case.

In the previous experiment we evaluated DP with fixed
number of partitions equal to the reduce tasks, in order
to have a fair comparison with Skewtune and Hadoop.
To examine the impact of extra partitions, we compared
our algorithm with the Load Balance (LB) algorithm pro-
posed for MapReduce in [14] which also proposes the
usage of more partitions. The LB algorithm strives to
maximize the Balance metric via a fair distribution of the
generated partitions. For a fair comparison with our DP
algorithm when sketches are utilized, we enhanced LB
with sketches for the estimation of the partitions’ sizes.
In the partitions’ assignment, each hash function of the
global sketch is examined and the one that achieves the

best Balance is chosen.

The displayed results concern 80% skewness between
the partitions’ sizes. Having the same number of parti-
tions as Hadoop on LB does not offer any gain because
the partitions’ assignment will be same as Hadoop’s, so
we only consider larger values for the number of par-
titions. In Figure 9 you can see the execution time of
the reduce phase when we use different number of parti-
tions. LB achieves better results than the default Hadoop
approach but the reduce phase requires higher execution
time than our approach. This is mainly due to the fact
that our approach is more opportunistic and less ”fair” in
the work that will be executed from the different tasks.
Tasks on nodes with high processing capabilities will
process more heavy-sized partitions than those that run
on slower nodes.

This ”unfairness” between the partitions’ sizes that are
processed per reduce task, is illustrated in Figure 10. For
40 partitions, LB achieves approximately 90% Balance
in the partitions’ sizes that are processed by the reduce
tasks for the Twitter job, while our proposal reaches
64%. The difference in the execution times is significant
though, as our approach requires approximately 1900 ms
while LB 2800 ms. The results indicate that in heteroge-
neous environments, trying to achieve balance between
the work assigned on the nodes of the cluster, may not
be the right approach. An opportunistic algorithm, such
as DP, achieves better results as it considers the hetero-
geneity during the partitions’ assignment.

Finally we examined the benefit of using sketches
in the partitions’ assignment. Figure 11 shows that
sketches mitigate the required execution time of the re-
duce phase as the number of partitions increases. This
is the expected behaviour since the key-value pairs have

9

198 11th International Conference on Autonomic Computing USENIX Association

more available partitions to be spread. The extra hash
functions used in the sketches can generate more bal-
ance sized partitions, thus better decisions are possible
for the DP algorithm to minimize the reduce phase ex-
ecution time. We examined the requirements of the two
approaches in regards to the time they require for decid-
ing the partitions’ assignment plan. For 45 partitions,
the no-sketches approach required approximately 80 ms,
while when we applied sketches, the assignment required
200 ms, so for cases such as the Twitter jobs where the
benefits of the sketches approach are larger than 500 ms
the extra overhead is negligible. However for very short
jobs such as Youtube, a no sketches approach is prefer-
able because the benefits of the sketch-based assignment
are overlapped by the extra overhead of the assignment
algorithm. In Figure 12, we display results concerning
the comparison between DP and LB when sketches are
enabled for both algorithms, although LB reduces the re-
quired execution time, DP still achieves better results.

6 Related Work

Zaharia et al [42] were the first to study the problem of
scheduling MapReduce jobs in heterogeneous environ-
ments. They proposed techniques for prioritizing and
scheduling backup copies of slow tasks. Contrary to
their work, our approach focuses on meeting real-time
response requirements for the tasks and identifies strag-
gling tasks via their laxity values. In [1], the authors
propose task-stealing solutions in the map phase. In an
heterogeneous environment like Planetlab, task-stealing
could degrade the performance due to the communica-
tion overhead between the nodes, and thus could aug-
ment the problem. A utility-driven task placement strat-
egy was proposed in [31] using extra processing slots
per node when possible. [39] propose the usage of EDF
scheduling of user submitted jobs. Our approach differs
from them because it does not only consider the real-time
demands of the jobs, but also effectively handles the is-
sue of data skewness.

Much work has been done with respect to estimating
the execution times of MapReduce tasks such as [29],
which utilizes debug runs to calculate the processing
speeds of the assigned job. [21] applied non-parametric
regression for tasks executing in heterogeneous environ-
ments, but not on a MapReduce framework, and also us-
ing only the input data size as the vectors’ value. We
were inspired by recent works in automatic anomaly de-
tection ([3], [13], [34], [35]) and adopted the usage of
machine learning techniques for the estimation of the
tasks’ execution times.

Focus on the skewed data impact on MapReduce was
mainly expressed by [14], [15], [27] and [28]. We com-
pared our approach with these proposals and displayed

results that indicate their inapplicability in our setting.
Techniques like [14] and [15] aim to equally distribute
the partitions to the available reduce tasks, however as
we pointed out in the experiments such decision is not
beneficial in a heterogeneous environment. [27] adds
the overhead of repartitioning the assigned partitions,
an overhead which deteriorates the performance of short
jobs and can lead to deadline misses. [32] requires a
pre-processing step for estimating the partitions’ sizes,
adding overhead in the calculations thus making the exe-
cution of short jobs impossible.

Authors in [16] propose a new abstraction on top of
Hadoop, the Shuffler component which is responsible for
keeping the received partitions in the node where the re-
duce tasks will run. The newly added component enables
intermediate data transmission between the map and re-
duce phase, reducing the cost of the shuffle phase. How-
ever, as it was pointed out in [7] when the intermediate
data to be emitted are rather small, as in our case, the
benefits of online transmission are negligible.

7 Conclusion

In this paper we study the problem of scheduling real-
time skewed MapReduce jobs in heterogeneous environ-
ments. We propose a holistic approach based on (a) a
non-parametric regression technique for estimating the
execution times of the tasks, (b) dynamic distributed least
laxity first scheduling algorithm for scheduling jobs end-
to-end, (c) techniques for identifying straggling nodes,
and (d) dynamic partitioning algorithms to handle the im-
pact of the data skewness on the execution times of the
tasks. Our experimental results on Planetlab indicate a
clear improvement in the system’s performance. In our
future work we aim at examining if it is possible to dy-
namically decide the number of partitions used per job.
This decision will enable us to balance the trade-off be-
tween reduce phase execution time and the computation
overhead of the partitions’ assignment algorithm.

8 Acknowledgments

This research has been co-financed by the European
Union (European Social Fund ESF) and Greek national
funds through the Operational Program Education and
Lifelong Learning of the National Strategic Reference
Framework (NSRF) - Research Funding Program:Thalis-
DISFER, Aristeia-MMD, Aristeia-INCEPTION Invest-
ing in knowledge society through the European Social
Fund, the FP7 INSIGHT project and the ERC IDEAS
NGHCS project.

10

USENIX Association 11th International Conference on Autonomic Computing 199

References
[1] AHMAD, F., CHAKRADHAR, S., RAGHUNATHAN, A., AND VI-

JAYKUMA, T. Tarazu: Optimizing MapReduce On Heteroge-
neous Clusters. ASPLOS, London, UK (2012).

[2] AMAZON’S DYNAMODB. http://aws.amazon.com/

dynamodb/.

[3] BODÍK, P., GRIFFITH, R., SUTTON, C., FOX, A., JORDAN,
M., AND PATTERSON, D. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. HotCloud
(2009).

[4] BOUTSIS, I., AND KALOGERAKI, V. Resource Management
using Pattern-based Prediction to Address Bursty Data Streams.
ISORC 2013, Paderborn, Germany (2013).

[5] BREUNIG, M. M., KRIEGEL, H.-P., T.NG, R., AND SANDER,
J. LOF: Indentifying Density-Based Local Outliers. SIGMOD
(2000).

[6] CHEN, Y., GANAPATHI, A., GRIFFITH, R., AND KATZ, R. The
Case for Evaluating MapReduce Performance Using Workload
Suites. MASCOTS (2011).

[7] CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M.,
ELMELEEGY, K., AND SEARS, R. MapReduce Online. No.
UCB/EECS-2009-136 (2009).

[8] CORMODE, G., AND HADJIELEFTHERIOU, M. Finding Fre-
quent Items in Data Streams. Proceedings of the VLDB Endow-
ment Volume 1 Issue 2, August, Pages 1530-1541 (2008).

[9] CORMODE, G., AND MUTHUKRISHNAN, S. An Improved Data
Stream Summary: The Count-Min Sketch and its Applications.
Journal of Algorithms Volume 55, Issue 1, April 2005, Pages 5875
(2005).

[10] DEAN, J., AND GHEMAWAT, S. MapReduce: Simplified Data
Processing on Large Clusters. OSDI, San Francisco, CA (2004).

[11] DOBRA, A., GAROFALAKIS, M., GEHRKE, J., AND RASTOGI,
R. Processing Complex Aggregate Queries over Data Streams.
SIGMOD (2002).

[12] DOU, A. J., KALOGERAKI, V., GUNOPULOS, D., MIELIKI-
NEN, T., AND TUULOS, V. Scheduling for real-time mobile
mapreduce systems. DEBS 2011, New York, New York (2011).

[13] FOX, A., KICIMAN, E., AND PATTERSON, D. Combining Sta-
tistical Monitoring and Predictable Recovery for SelfManage-
ment. WOSS (2004).

[14] GUFLER, B., AUGSTEN, N., REISER, A., AND KEMPER, A.
Handling Data Skew In MapReduce. CLOSER (2011).

[15] GUFLER, B., AUGSTEN, N., REISER, A., AND KEMPER, A.
Load Balancing in MapReduce Based on Scalable Cardinality Es-
timates. ICDE (2012).

[16] GUO, Y., RAO, J., AND ZHOU, X. iShuffle: Improving Hadoop
Performance with Shuffle-on-Write. Presented as part of the 10th
International Conference on Autonomic Computing (2013).

[17] HADOOP. http://lucene.apache.org/hadoop.

[18] HADOOP CAPACITY SCHEDULER. http://hadoop.apache.

org/common/docs/r0.19.2/capacity_scheduler.html.

[19] HADOOP FAIR SCHEDULER. http://hadoop.apache.org/

mapreduce/docs/r0.21.0/fair_scheduler.html.

[20] IBM INFOSPHERE BIGINSIGHTS. http://www-01.ibm.com/
software/data/infosphere/biginsights/.

[21] IVERSON, M. A., ÖZGÜNER, F., AND J.FOLLEN, G. Run-
Time Statistical Estimation of Task Execution Times for Hetero-
geneous Distributed Computing. HPDC (1996).

[22] JIN, H., YANG, X., SUN, X.-H., AND RAICU, I.
ADAPT: Availability-aware MapReduce Data Placement for
Non-Dedicated Distributed Computing. ICDCS, page 516-525.
IEEE (2012).

[23] KALOGERAKI, V. Resource management for real-time fault-
tolerant distributed systems. PhD Thesis, Univ. of California
Santa Barbara (2000).

[24] KALOGERAKI, V., MELLIAR-SMITH, P. M., AND MOSER,
L. E. Dynamic scheduling of distributed method invocations.
RTSS (2000).

[25] KARDOSA, M., AND CHANDRA, A. Resource Bundles: Using
Aggregation for Statistical Wide-Area Resource Discovery and
Allocation. ICDCS (2008).

[26] KOLB, L., THOR, A., AND RAHM, E. Load Balancing for
MapReduce-based Entity Resolution. ICDE (2012).

[27] KWON, Y., BALAZINSKA, M., HOWE, B., AND ROLIA, J.
SkewTune: Mitigating Skew in MapReduce Applications. SIG-
MOD (2012).

[28] LIU, Y., LI, M., ALHAM, N. K., HAMMOUD, S., AND PON-
RAJ, M. Load balancing in MapReduce environments for data
intensive applications. Fuzzy Systems and Knowledge Discovery
(FSKD), 2011 Eighth International Conference on Shanghai 26-
28 July (2011).

[29] MORTON, K., FRIESEN, A., BALAZINSKA, M., AND GROSS-
MAN, D. Estimating the Progress of MapReduce Pipelines. ICDE
2010 (2010).

[30] PALANISAMY, B., SINGH, A., LIU, L., AND LANGSTON, B.
Cura: A Cost-optimized Model for MapReduce in a Cloud.
IPDPS (2013).

[31] POLO, J., CASTILLO, C., CARRERA, D., BECERRA, Y.,
WHALLEY, I., STEINDER, M., TORRES, J., AND AYGUADÉ,
E. Resource-Aware Adaptive Scheduling for MapReduce Clus-
ters. Middleware’11 Proceedings of the 12th ACM/IFIP/USENIX
international conference on Middleware Pages 187-207 (2011).

[32] RAMAKRISHNAN, S. R., SWART, G., AND URMANOV, A. Bal-
ancing reducer skew in MapReduce workloads using progressive
sampling. SoCC ’12 Proceedings of the Third ACM Symposium
on Cloud Computing (2012).

[33] SCOTT, D. Multivariate density estimation: Theory, practice and
visualization. Theory, Practice and Visualization. Wiley & Sons
(1992).

[34] TAN, Y., GU, X., AND WANG, H. Adaptive System Anomaly
Prediction for Large-Scale Hosting Infrastructures. PODC
(2010).

[35] TAN, Y., NGUYEN, H., SHEN, Z., GU, X., VENKATRA-
MANI, C., AND RAJAN, D. PREPARE: Predictive Performance
Anomaly Prevention for Virtualized Cloud Systems. ICDCS
(2012).

[36] TWITTER. http://twitter.com.
[37] UNDER THE HOOD: SCHEDULING MAPRE-

DUCE JOBS MORE EFFICIENTLY WITH CORONA.
https://www.facebook.com/notes/facebook-engineering/under-
the-hood-scheduling-mapreduce-jobs-more-efficiently-with-
corona/10151142560538920.

[38] VERMA, A., CHERKASOVA, L., AND CAMBELL, R. H. Re-
source Provisioning Framework for MapReduce Jobs with Per-
formance Goals. Proceedings of the 12th ACM/IFIP/USENIX In-
ternational Middleware Conference (Middleware’2011), Lisboa,
Portugal, December 12-16 (2011).

[39] VERMA, A., CHERKASOVA, L., KUMAR, V. S., AND CAM-
BELL, R. H. Deadline-based Workload Management for MapRe-
duce Environments: Pieces of the Performance Puzzle. Network
Operations and Management Symposium (NOMS), 2012 IEEE
(2012).

11

200 11th International Conference on Autonomic Computing USENIX Association

[40] W.HÄRDLE. Applied nonparametric regression. Cambridge Uni-
versity Press, 1990.

[41] YOUTUBE. http://www.youtube.com.

[42] ZAHARIA, M., KONWINSKI, A., JOSEPH, A. D., KATZ, R.,
AND STOICA, I. Improving MapReduce Performance in Hetero-
geneous Environments. OSDI (2008).

12

