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ABSTRACT
Encouraging users to participate in community-based sens-
ing and collection for the purpose of identifying events of in-
terest for the community has found important applications
in the recent years in a wide variety of domains including
entertainment, transportation and environmental monitor-
ing. One important challenge in these settings is how signif-
icant events can be detected by exploiting the data sensed,
gathered and shared by the crowd, while respecting the re-
source costs. In this paper we investigate the use of dy-
namic clustering and sampling techniques that allow us to
significantly reduce utilization costs by clustering low-level
streams of events based on their geo-spatial locations and
then selectively retrieving the ones that depict the highest
interest. Our experimental results illustrate that our ap-
proach is practical, efficient and depicts good performance.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]
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1. INTRODUCTION
“Community-based Participatory Sensing” systems where

all the members contribute data to the system with the pur-
pose of identifying events of interest for the community, are
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increasingly gaining popularity in recent years. The data are
typically produced in the form of data streams and are gen-
erated on ubiquitous and portable devices, such as smart-
phones and tablets which are outfitted with a wide range
of sensing capabilities, like GPS, WiFi, microphones, cam-
eras and accelerometers. By combining data streams from
different devices, important information and events of inter-
est can be extracted such as congestion detection or real-
time delay estimation as in the VTrack system [35]. Similar
examples can be found in a number of domains including
location-based services such as personalized weather infor-
mation and for identifying areas of good WiFi connectivity
[12], determining fuel efficient routes [13] and earthquake
warning detection systems[27].

One important observation in these systems is that many
people may gather in one place when an important event
occurs. This happens in various situations such as social
events (i.e., conferences, concerts), traffic events (i.e., traffic
congestion) or emergency events (i.e., earthquakes, floods).
In these situations we are interested in identifying instantly
that an event occurs, from the “gathering” of the people in a
specific place, and then to analyze the event in more detail
to define its nature.

Hence, one fundamental question is how to achieve effi-
cient event detection by exploiting the data observed and
provided by the crowd. This is a challenging problem con-
sidering the fact that mobile devices often produce more
data than the network can deliver or the system can process,
while only a subset of the data suffices to provide useful in-
formation about the events. In some cases, a small number
of observations may yield confident event detection, while in
other cases, a large number of observations are required to
identify an event precisely.

Supporting efficient event detection in participatory sens-
ing systems is a challenging process, as one needs also to
consider the respective costs for the devices when produc-
ing and delivering the data, such as the energy consump-
tion and the monetary cost (i.e., 3g cost). It is vital that
energy resources are used efficiently, especially when data
stream sources are energy-constrained mobile devices and
the amount of the users in participatory sensing systems de-
pend on their costs. Thus, a fundamental question is how to
define a suitable subset from the available data, to provide
results of high quality, with small cost.

Our main idea is that the efficient identification of the im-
portant events where many participants are gathered can be
achieved through clustering, and the selection of the most
important data streams requires an efficient sampling ap-



proach. Clustering[1, 4] and sampling[10, 5, 22] in large
multidimensional datasets are two major data analysis tasks.
However, there is inherent complexity of the clustering tech-
niques, especially when we deal with stream data to detect
events that can potentially evolve over time. Sampling on
the other hand can reduce the size of the problem by select-
ing a subset of the data for processing, so that the available
resources would be able to process the size of the sample.
However, the sample needs to be decided with respect to the
input data and the selection criteria. Thus, defining the op-
timal selection criteria to export a representative sample is a
fundamental task when efficient event detection is required.
Our goal is to use clustering as well as sampling techniques
to select the stream data to be processed, that will enable
us to identify core real-world events of interest over time in
an accurate and efficient manner.
In this paper we present DENSE, a community-based par-

ticipatory sensing system that aims to stimulate user partic-
ipation by encouraging users to be members of the system
as part of a dynamic group, so as to identify events of in-
terest as they occur. Users participate in the community by
sensing and sharing streams of data. Our technique uses the
user’s GPS readings to dynamically determine clusters that
evolve over time, to identify the locations where important
events take place. Then we perform sampling, by selecting
a subset of the devices that participate on these clusters to
retrieve their data streams. The sampling is based on the
amount of data streams that the system can handle, and
the selection aims to retrieve the most representative data
streams in every cluster. This way we are able to extract
important events, with minimal cost. We summarize our
contributions below:

• We presentDENSE, our system that exploits the data
gathered and shared by members of the participatory
sensing system to achieve efficient detection of events.
Our focus is on social events such as concerts, theatri-
cal performances, etc., that involve the gathering of
people in dense spatial regions.

• We develop a dynamic clustering technique that allows
us to cluster data streams generated from user mobile
devices. Our technique extracts and updates the clus-
ters dynamically using the stream data shared by the
participants, to identify the locations where events of
interest occur.

• We present a sampling scheme that selects k good rep-
resentative streams with respect to the number, shape
of the clusters and the data points distribution.

• We provide a detailed experimental evaluation of our
approach on PlanetLab[30] using the T-Drive trajec-
tory dataset[38, 37].

2. SYSTEM ARCHITECTURE AND MODEL
In this section we present the architecture and main com-

ponents of our system, DENSE (Dynamic EveNt detection
in participatory SEnsing Sytems). We then describe the sys-
tem model and introduce our clustering and sampling model.

2.1 DENSE Architecture
DENSE is a wide-area stream processing middleware that

comprises a set of distributed nodes, denoted as ni, con-
nected via virtual links, denoted as lj . DENSE is built as

an overlay on top of the Pastry peer-to-peer network and
runs on Planetlab [30]. The goal of DENSE is to support
the execution of distributed stream processing applications
with QoS constraints, while efficiently managing the system
resources. A distributed stream processing application is
represented as a graph, where nodes represent the functions
(that we call event processing components) and edges repre-
sent the data streaming between the different components
based on the application logic. Upon submitting a user re-
quest, the system instantiates the appropriate components
on the system nodes, in order to perform the processing, re-
quired by each application. Examples of application compo-
nents are streaming components that are responsible to gen-
erate the stream data (e.g., accelerometer sensor) or stream
processing components (such as aggregation and projection
components) that are used to process data streams from
multiple mobile devices.

Figure 1 illustrates the DENSE architecture. In our pre-
vious work, we have implemented the following modules: i)
A discovery module used for identifying application compo-
nents and data streams in the system. ii) A routing module
that is responsible for routing data streams as well as pro-
tocol messages between nodes. iii) A monitoring module for
building and maintaining resource utilization profiles. iv) A
composition module that selects and instantiates application
components at runtime. v) A resource management module
named RADAR [7], that attempts to manage the resources
dynamically based on the applications’ QoS demands and
resource availability. We extend the DENSE middleware
with: vi) A clustering module, which is responsible to deter-
mine the clusters dynamically, based on the GPS readings
provided by the users. vii) A k-sampling module, that deter-
mines which of the available data streams will be processed.
The sampling and clustering components work in concert,
as we describe next.

In the DENSE system, we assume a spatial decomposition
of the geographic area into a number of non-overlapping re-
gions, similar to that of [34]. The organization of the area
into regions can be done with respect to the size of the ge-
ographic area or the number of participants in the region,
possibly defining several tiers at different levels of granu-
larity, ranging from small local areas at the lowest tier, to
the entire network area at the highest tier; this allows the
system to collect streaming data from all users in a scalable
manner.

2.2 System Model
In this paper we are interested in identifying events in

“dense spatial regions”; these are events that involve the
gathering of many people in one place considering the time
and location dimensions, such as conferences, theatrical per-
formances, festivals, media events, sporting events, traffic
events, natural disasters (e.g., floodings), etc. Our goal is
to detect the exact location of such events and then to iden-
tify a representative subset of the data streams for further
processing. This will allow us to considerably reduce the re-
source consumption when tracking how these events evolve
over time. Note though, that, our technique is general and
can be used in multiple application scenarios such as deter-
mining congested areas or car accidents, earthquake detec-
tion, etc.

In our system we exploit streams of data generated by
application modules running on the smartphones, for each



Figure 1: DENSE architecture.

useri ∈ U . A stream of data consists of a sequence of
individual chunks of data, called Application Data Units
(ADUs); these are messages triggered locally at the phone
using sensors present on mobile phones such as microphone,
camera, GPS, accelerometer, motion sensors, etc., and their
exact form is application dependent. An example of such
ADUs is: <user id, accelerometer data, microphone sam-
ples, timestamp, latitude, longitude> (for earthquake mon-
itoring). The data units from multiple mobile sensors are
streamed into the distributed stream processing system for
further processing. The ADUs may vary in size since they
may combine several types of data with different characteris-
tics (e.g., they might contain audio samples and accelerom-
eter data for analyzing the congestion levels in a location)
and so we must ensure that the amount of ADUs will not ex-
ceed the system’s processing and communication resources.
Thus, only a subset of the users that belong to the clus-
ters, provided by the clustering component, are selected to
provide their ADUs. Smartphones are powerful enough to
do some local processing instead of sending the raw data
streams. For example, in an earthquake monitoring appli-
cation, the mobiles may process the data sensed from the
accelerometer to define if they exceed an “alarm” threshold
or to determine if their GPS location is similar to their previ-
ous location. The advantage is less communication overhead
at the expense of higher processing overhead for the smart-
phones. However, local processing is application dependant,
since it does not provide a benefit for every application (i.e.
video processing on smartphones is prohibitive).
We note that the clustering and the sampling components

are triggered in our system periodically, and the value of the
time period is based on the events that we want to track.
Thus, whenever the defined time period expires, both com-
ponents are utilized to process the received GPS locations,
extract the clusters and select the users to sample from.
The clustering component, implemented at the nodes

of DENSE, will be using the data that include the GPS
location of each useri. In order to conserve energy and re-
duce the cost we state that users should not transmit their
data units when their GPS location is identical to their pre-
vious one. Thus, our system uses a cache to preserve the
users’ previous locations, for some time. Nevertheless, after
the defined time period has been exceeded and the user has
not provided a new location, the system considers that the
user has gone offline, so it stops using his last location when
defining the clusters.
The sampling component, implemented at the source

nodes of DENSE is responsible for obtaining the application
data streams after deciding which of the mobile nodes will
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Figure 2: Required sample size to guarantee that a
fraction of the cluster will be included in the sample.

have their data streams processed. This component works
in concert with the clustering and the rate allocation com-
ponent to determine the users that will submit their data.

2.3 How to Select Good Event Representatives
In this section we consider the implications of sampling

for our technique. We note, that, random uniform sampling
may not be sufficient in our system and we choose to imple-
ment and use a method for biased sampling. The problem
with random sampling is two-fold: First, if applied in the
original dataset with the purpose of speeding up the com-
putation, the use of uniform random sampling may lead to
loss of events. To illustrate this, consider the following situ-
ation:

Guha et al. in [14] present a formulation to link the sample
size with the probability that a fraction of the cluster is
included in the sample, based on Chernoff bounds. For a
dataset D of size n, let u be a cluster of size |u|. They
consider that a cluster u is included in the sample when
more than ϕ ∗ |u| points of the cluster belong to the sample,
with 0 ≤ ϕ ≤ 1.

Figure 2 illustrates the sensivity of the sample size re-
quired by uniform random sampling to guarantee that u is
included in the sample, with a probability no less than δ,
0 ≤ δ ≤ 1, for a database of n = 10,000 points. As can be
observed, in order to guarantee with probability 99%, that
30% of the points of a cluster with 500 points will be included
in the sample, we need to sample 35.3% of the database.

However, in [22] they show that using biased sampling
we can get a sample that has the same probability to in-
clude points from a given cluster with smaller sample size
than uniform random sample. Second, since our goal is to
retrieve data from devices which are located in small but
dense clusters, using uniform sampling we would have to in-
clude a large fraction of data items, and this would result in
high resource consumption. Furthermore, as we show in our
experimental evaluation, even if we consider only the sub-
set of points that belong to the clusters as the dataset D,
the use of random uniform sampling provides a worse than
biased sampling selection of points, to analyze the events.

3. OUR PROPOSED APPROACH
In this section we illustrate how we employ clustering and

sampling to provide efficient event detection.

3.1 Clustering
Clustering is the task of grouping a set of objects in such a

way that objects in the same group, denoted as cluster, are
more similar to each other, meaning that their attributes are
closer in the multidimensional space, than to those in other
groups. We take advantage of clustering to define the groups



that contain a large number of users in a geo-spatial location.
The selection of the clustering approach plays an important
role to the identification of the locations where important
events take place. Several clustering techniques have been
proposed in the literature [1, 32] such as the K-means[16]
and K-medoids[29] algorithms. However these algorithms
cannot be used in our setting since they typically perform
better when the clusters are spherical, and are incapable
to detect noise and outliers. Hierarchical clustering[19] has
several advantages over K-means and K-medoids algorithms.
It can be used to discover clusters of arbitrary shape and is
insensitive to the size of the cluster. However, the runtime
complexity of hierarchical clustering algorithms is quadratic.
Density-based clustering is a natural and attractive clus-

tering approach for our situation since it can identify arbi-
trarily shaped clusters, it can handle noise and outliers, and
one-pass algorithms that need to examine the raw data only
once exist, thus the method’s complexity is low. We note
also that density corresponds well to human perception of
clusters in the Eucledian space. Finally, density based clus-
tering does not demand a prior knowledge of the amount of
clusters k as the k-means algorithm does.
There are two well-known clustering algorithms for density-

based clustering: (i) DBSCAN [32] and (ii) Optics [4]. DB-
SCAN is one of the most common clustering algorithms. In
DBSCAN, the definition of a cluster is based on the no-
tion of density reachability. The algorithm’s main idea is
to instantiate a cluster when at least a predefined number
of points are reachable from a point p, meaning that these
points are within a specific range from p. All of these points
are integrated to the cluster, and the cluster is expanded
recursively by examining which of these new points possess
the same property, so that their reachable points will be in-
cluded in the cluster. Optics is similar to DBSCAN, but it
addresses one of DBSCAN’s major weaknesses, that is the
problem of detecting meaningful clusters in data of varying
density. This is achieved by ordering (linearly) the points of
the database so that that points which are spatially closest
become neighbors in the ordering. Additionally, a special
distance is stored for each point that represents the density
that needs to be accepted for a cluster in order to have both
points belong to the same cluster. Afterwards, the algorithm
can export the clusters from the ordered list. However, none
of these approach deals with mobile data where the clusters
need to be managed and updated in real-time.

3.2 Dynamic Clustering
Assuming a data set D, containing a number of points

(x1, x2, ..., xm), the goal is to extract a number of non-
overlapping subsets x1, x2, ..., xn, with n < m, identified as
clusters, whose points are close to each other in the multi-
dimensional space, based on the clustering criterion.
Our approach for dynamic clustering shares the same logic

with Optics, but is designed to extract efficiently clusters
from stream data.
The clustering approach requires two parameters when

processing a point: ε, that describes the maximum distance
to consider, and MinPts, describing the minimum amount
of points required to form a clusterc. Thus, a point p is con-
sidered as a core point if at least MinPts points are found
within its ε − neighborhood, Nbε(p). Similar to Optics we
consider a core distance and a reachability distance vari-
able for each point. Each point is assigned a core distance,

core(p), that basically describes the distance to its farthest
point among the closest MinPts as:

core(p) =

{
∅ if |Nbε(p)| < MinPts

distance to farthest MinPts otherwise

The reachability distance of a point p, reach(p), from an-
other point o is defined as the distance between p and o, or
the core distance of o:

reach(p, o) =

{
∅ if |Nbε(o)| < MinPts

max(core(o),distance(o, p)) otherwise

Intuitively, if o and p are nearest neighbors, this distance
is used to examine if ε′ < ε to decide if o and p belong to
the same cluster.

The clustering process works as shown in Algorithm 1.
It traverses through not-processed points, and when a core
point p (core(p)! = ∅) is found, and thus a cluster can be
instantiated, it identifies the points within its Nbε(p), adds
them in a Priority Queue and updates their distances on
the defined order. Additionally, it also adds in the Priority
Queue and updates the distances, of the points inNbε(q), for
every core point q within the Nbε(p) recursively. Thus, sim-
ilar to Optics, the points are ordered based on their spatial
distance. The goal of the algorithm is to extract the clus-
ters from the ordered list by traversing through the points
and checking the reachability distances among consecutive
points. Thus we denote as a clusterc, a group of consecutive
points where their reachability distance does not exceed an
application dependant predefined value, which plays a cru-
cial role in the amount of extracted clusters [4]. In our exper-
iments we denote that two consecutive points belong to the
same cluster when their reachability distance is defined and
less than ε. Thus, we iterate through points and define as
noise the points whose core(p) == ∅ and reach(p, o) == ∅,
we initiate a clusterc when p has the attribute core(p)! = ∅
and reach(p, o) == ∅ and add all the following points to
the same cluster until we find a point with the attribute
reach(p, o) == ∅. We note that, as it is obvious from the
algorithm, each point p has a defined reachability variable,
either if it has more than MinPts points within its Nbε(p)
(core point), or if it belongs to the ε − neighborhood of a
core point.

Clustering Mobile Data. In our system all the mobile
devices define their gps location by providing the following
information : <user id, timestamp, latitude, longitude>,
where the user id is generated through SHA-1 hashing, the
timestamp represents the unix time when the location was
retrieved, and the latitude, longitude represent the actual
location. In this paper we assume that the noise in the
readings of the sensors is negligible.

Periodically all participants examine if their gps locations
differ from their previous geographical location and in that
case they transmit their new location to the clustering com-
ponent. Our clustering component receives the GPS read-
ings, and updates the clusters, by using two functions, in-
sert and remove. Thus, for each time period the clustering
component: (i) Inserts newly arrived users. (ii) Removes
and re-inserts the points for an updated user location. (iii)
Removes the points that represent users that have not par-
ticipated with a new location for a recent time period. Thus,
we update the new distances and derive the corresponding



Algorithm 1 Clustering

ClusterData(ε, MinPts)
Initialize ordered list L
for (∀p ∈ DB if p not-processed) do

N = points inside Nbε(p)
Set p processed; L.add(p);
Seeds = new Priority Queue
if (core(p)! = ∅ ) then

update (N, p , Seeds, ε, MinPts)
for (q ∈ Seeds) do

N ′ = points inside Nbε(q)
Set q processed; L.add(q);
if (core(q)! = ∅ ) then

update (N’, q , Seeds, ε, MinPts)

update(N, p, Seeds, ε, MinPts);
coredist = core(p);
for (∀o ∈ N) do

if (o! = processed) then
new-reach = max(coredist, distance(o, p))
if (reach(o) == ∅) then

o.reach = new-reach; Seeds.add(o, new-reach);
else

if (new-reach < reach(o)) then
o.reach = new-reach ; Seeds.move up(o, new-reach);

clusters (explained below). Finally the formed clusters, ex-
tracted for that time period, are provided to the sampling
component to define the mobile devices that will provide the
application specific ADUs through k-sampling.
Updating the Clusters. The advantage of our approach

is that it modifies only the portions of the ordered list that
needs to be updated when the data change. Thus, when the
points of a cluster remain static, they do not need to be up-
dated. However we can insert and remove points that might
affect the existence, the shape or the size of the clusters, and
thus we should provide an updated view over time.
The points that are processed can be assigned to three

categories: (i) Core points which are the points that be-
long to a cluster, and there are more than MinPts points
found within their Nbε(p), (ii) Reachable points which
are the points that belong to a cluster but there are less
than MinPts points found within their Nbε(p), and they
are typically found in the boundaries of the cluster, and (iii)
Noisy points which are the points that they do not belong
to any cluster.
Changing one point can affect multiple neighbor points,

meaning that their reachability or core distance should be
changed. Since DENSE works with stream data, multiple
points can be affected over time, when users update their
gps location (points). In order to avoid redundant process-
ing on the same points, when several points change in the
same neighborhood we mark the changed and the affected
points from the updates as not-processed and remove them
from the ordered list L. At the end of the time period we ex-
ecute our Clustering method that processes only the marked
points and then we extract the updated clusters. We state
that the ordered list of the algorithm is maintained through
executions so that the data will be updated. The insert and
remove functions are shown in Table 1.
Insert. When a user transmits a new GPS location, its

current position has changed and thus the point p should be
inserted in the dataset to compute new clusters, while its
previous position (if exists) needs to be removed. Point p
might be inserted in the spatial region where a cluster exists

Insert(p, ε, MinPts)
N = points inside Nbε(p);
for (∀l ∈ N ) do

Set l not-processed;
if ( l belongs to cluster
c) then

Set all n ∈ c as not-
processed;

Remove(p, ε, MinPts)
N = points inside Nbε(p);
for (∀l ∈ N ) do

Set l not-processed;
if ( p belongs to cluster c)
then

Set all n ∈ c as not-
processed;

Table 1: Insert, Remove

or a new cluster can be formed or it might be a noisy point.
In all cases we have to update the distances of the points
that belong to the Nbε(p). This is done by setting all the
points in the Nbε(p) as not processed. However, in the case
that one of the points in Nbε(p) belongs to a cluster c, we
need to set as non-processed all the points of the cluster c
as well. This happens because a Reachable point receives
its reachability distance from the core point, and if this core
point does not belong to the Nbε(p), to be re-processed, the
Reachable point will be assigned with a wrong distance that
may affect the extraction of the clusters. However, typically
no more than one clusters will be found in the Nbε(p).

Remove. When a user has not transmit a new loca-
tion for some time or has updated his/her current position,
the previous position needs to be removed from the dataset.
When we remove a point p in case where it is a core or a
reachable point then the integrity of the cluster should be
investigated, since it can can lead to the removal of some
Reachable points from the cluster or to the division of the
cluster, if less than MinPts have left to the core points’
range after the removal of point p. Thus, we need to set as
not processed all the points that belong to the same cluster
with p, if p belongs to a cluster and all the points in the
Nbε(p). In the case that point p is a noisy point it can be
easily removed since it does not affect any clusters.

Complexity. Our complexity is similar to Optics, that
is, we also achieve a worst case complexity of O(n · logn) for
initializing the clusters. However, at runtime, typically less
than n points need to be updated.

3.3 K-Sampling
Once the clusters are identified we select a subset of the

mobile devices, to provide the system with the application
specific ADUs that may contain data with different charac-
teristics such as audio feeds, accelerometer data, etc. This
will allow us to validate and track the event over time.

Suppose there are l data streams originating from mobile
nodes in a specific region. The goal of the sampling com-
ponent is to select a subset of the application data units k,
(where k < l) to be processed. The sampling component
consults the resource management component to determine
the maximum amount of data units (k), that the system
can efficiently process, depending on resource availability.
These k data units should derive from users that belong to
the clusters, formed by the clustering component, to ana-
lyze the events that takes place in these clusters. Thus, for
each time period we select the k most representatives data
streams, to analyze the identified clusters. However the se-
lection of the k devices to retrieve their ADUs is not trivial.

First we note that the sample that we will receive from
each cluster is proportional to the cluster’s size and that at
least one point will be selected for each cluster. This hap-
pens since when we are limited in resources we would like to
extract more data from clusters with a lot of points, since
they would represent more important events. Thus we select



from each clusterc: max(1, k∑c
i=1 amc

∗ amc) points, where

amc represents the amount of points in cluster clusterc and
k is the amount of points that the system can process, pro-
vided by the resource management component.
Although different techniques can be used to select a sub-

set from each cluster, we aim to retrieve the most repre-
sentative users. Each user typically represents other users
within a range, since they will generate similar data. For
instance, all the users driving on the same road will most
likely have the same traffic speed, etc., and thus we only
need to select one user to represent the others. Hence, our
goal is to select the users that will represent the maximum
amount of other users in the cluster, based on the distribu-
tion of the users and their local density. In order to export
these users we define the function Repr(point p, radius

x) that is able to identify the list of points that can be
found within a radius x from point p, along with point p,
Repr(p, x) = {q : ∀q s.t. distance(p, q) ≤ x}.
Using Kernels for Density Estimation. Kernel den-

sity estimation is based on statistics and more specifically
on the kernel theory [11, 36]. Kernel estimation is a gener-
alization form of sampling, where all points have a weight
of one but they distribute their weights in the space around
them. A kernel function describes the form of this distribu-
tion. We choose to implement clustering and then sampling
on the clusters based on the kernels, instead of just using
the kernels to extract the sample for two reasons. First,
the computational function for the kernels depends on the
amount of points and thus computing the kernel density es-
timators for the whole database would increase the complex-
ity compared to computing them only for a small number
of points in the clusters. Second, using this technique for
the whole database might abandon small clusters where the
points are distributed in a sparser manner, although they
involve events.
For a data set D, let (x1, x2, ..., xn) be a set of tuples

drawn from some distribution with an unknown density f.
We are interested in estimating the shape of this function f.
Its kernel density estimator is:

f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
(1)

where K(•) is the kernel, a symmetric but not necessar-
ily positive function that integrates to one, and h > 0 is
a smoothing parameter called the bandwidth. A kernel
with subscript h is called the scaled kernel and defined as
Kh(x) = 1/h ∗ K(x/h). It has been shown that the exact
shape of the kernel function does not affect the approxima-
tion [11], and a polynomial or a Gaussian function can work
well. Thus, for our experiments we choose to use the com-
mon Gaussian function as the kernel function:

K(u) =
1

√
2π

e−
1
2
u2

(2)

However, the standard deviation of the function, that is
the bandwidth, plays an important role. In our experiments
we choose the bandwidths according to [33], where it has
been shown that if Gaussian basis functions are used, and
the underlying density being estimated is Gaussian then the
optimal choice for h is:

h =

(
4σ̂5

3n

) 1
5

≈ 1.06σ̂n−1/5 (3)

where σ̂ is the standard deviation of the samples.

In our setting the values of xi represent the 2-dimensional
points latitudei, longitudei. Thus for the distance x−xi we
use the Euclidean distance among 2-dimensional points:

dist(x− xi) =

√
(lat− lati)

2 + (long − longi)
2. (4)

The kernel density estimator metric for each of the points
within a cluster, can be estimated, by combining 1,2,3,4 as:

f̂h(x) =
1

nh

n∑
i=1

1
√
2π

e
− 1

2

(
dist(x−xi)

h

)2

(5)

Algorithm 2 Selection of Representative Points (Radius x)

for (∀p ∈ clusterc) do

Compute f̂h(p) of point p;

Add p in the ordered list OL based on f̂h(p);
repeat

Select point p with the highest f̂h(p) in the OL;
repp = |Repr(p, x)| ;
Remove all points q, q ∈ Repr(p, x) from OL;
Add p to SL;

Update the f̂h(p), ∀p ∈ OL and reorder OL;

until (|SL| ≥ k∑c
i=1 amc

∗ amc)

if (|SL| < k∑c
i=1 amc

∗ amc) then

Select k∑c
i=1 amc

∗ amc − |SL| points /∈ SL;

Proposed k-Sampling technique. We propose a greedy
algorithm to solve the maximization problem, based on the
kernel density estimator. The goal of our approach is to
greedily select the point that is able to represent the highest
number of points, until the resource constraint will be ful-
filled. The steps of our algorithm are shown in algorithm 2,
and need to be executed for each cluster individually. We se-
lect a radius x to identify the range within which a point can
be consider as representative for another point. In our ex-

periments we set x dynamically as ε/
(
2 ∗ k∑c

i=1 amc
∗ amc

)
.

First, we estimate the density for every point p as f̂h(p).
That way we are able to identify the points that represent
a lot of other points. Then, the points are inserted in an
ordered list OL with respect to their kernel density esti-
mator. While less than k∑c

i=1 amc
∗ amc points have been

selected, we select point p with the highest kernel density
estimator value from the ordered list OL and insert it in the
list of selected points SL. Then, we remove all the points
that belong in the list of Repr(point p, radius x) from
the ordered list OL, since these points are represented by
point p and we note the amount of the representative points
repp to be used as a weight, as we will discuss later. More-
over, we update the kernel density estimator and the ordered
list for the remaining points before continue with the loop,
since the kernels might have changed after the removal of
the points. For instance a point that was close but outside
the radius of p will have a lower density estimator if a lot
of neighboring points have been removed. If the algorithm
is terminated and the amount of selected points in the list,
|SL|, are less than k∑c

i=1 amc
∗ amc points, then we select

k∑c
i=1 amc

∗amc−|SL| points randomly from the points that

have not been selected, p /∈ SL.
After the points have been selected for each cluster we

inform the devices that correspond to these points to pro-
vide their application-specific ADUs for the sampling. Each
of the ADUs will be assigned with a weight, based on the



amount of the representative points for point p, denoted
as repp and thus the processing of each ADU is consid-
ered as processing repp identical ADUs. Consider for exam-
ple an application that aims to export the sound pollution
within a cluster. Each ADU contains the estimated decibels
collected by the mobile device. The average sound pollu-
tion in this application will be computed as: pollution =
(sound levelp ∗ repp)/

∑
repp.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
We have implemented our techniques over the DENSE

middleware and tested it on the PlanetLab [30] testbed. Our
system was implemented in Java6 with approximately 5.7K
lines of code.
Event Identification Application: The experimental

evaluation scenario used was an application that is able to
identify events that happen in a specific spatiotemporal re-
gion, such as concerts, sports events or traffic congestion in
the city of Beijing in real-time. We used the T-Drive Trajec-
tory Dataset [38, 37], where we extracted a one-week trajec-
tories (from 2-2-2008 until 8-2-2008) that represent 10,357
taxis in the city of Beijing. The total number of points in
this dataset is about 15 million and the total distance of the
trajectories reaches 9 million kilometers.
The experimental evaluation focuses on the following pa-

rameters: (i) Clustering and Sampling efficiency, (ii)
Clustering and Sampling Latency, (iii) Comparison
of our approach with Optics, D-Stream, DBSCAN,
Uniform Sampling, in order to evaluate the bene-
fit of different features of our approach, (iv) Benefit
from the Online Clustering and (v) Energy savings.

4.2 Operation of DENSE
In this section we demonstrate the operation of DENSE

in identifying events in a real dataset and also illustrate its
superiority over Uniform Sampling.
First, we illustrate the advantage of our approach, when

using our dynamic density clustering to identify the events,
before sampling is performed. In figure 3 we present the
spatial distribution of all the taxis in the dataset, at 6:20 of
7/2/2008. As can be observed most of the points are located
near the city center. Note that the latitude distance (39.6
- 40.6) is approximately 110 km and the longitude distance
(115.5-117.5) is approximately 170km.
We have executed our online clustering approach for these

points and set the parameters as follows: MinPts = 30 and
ε = 0.01 ' 1km, which means that we aim to identify clus-
ters with core-points which have at least 30 neighbors inside
a radius that is approximately 1km. This is presented in fig-
ure 4, where we extracted 24 clusters. Some of these clusters,
like the large red cluster in the city center, can be ignored
since they reflect events which are repeated every day in
specific time periods, like the traffic in the city center. How-
ever, our approach is able to identify whether these clusters
should be further explored, in case where the size of these
clusters differs from the expected size for the specific time
period. An advantage of our clustering technique, that can
be shown in figure 4, is that it also considers points that are
part of a more densely packed cluster individually. This can
be easily observed by the small clusters near the large red
cluster which should be treated independently, while other

clustering techniques, such as K-Means, would consider all
of them as one large cluster.

We state at this point that the selection of the two param-
eters MinPts and ε plays an important role to the identifi-
cation of the clusters and should be tuned according to the
structure of the events that we want to identify. Thus if our
goal is to find more dense clusters in an area, we could set
a higher number to the MinPts compared to the examined
area. For instance we present the same snapshot with figure
5, when MinPts is set to 60 and ε is set to 0.01.

In figure 6 we present a snapshot of uniform sampling that
contains the same amount of data points as the ones that
we extracted through clustering (approximately 35% of the
total points). As can be seen the uniform sampling selects
users for sampling that cover the whole area, including a lot
of outliers. However, since our goal is to identify events in
the specific area, if we use uniform sampling we will end up
sampling from several users that do not provide any ben-
efit, in terms of event analysis, and thus wasting a lot of
resources, which are available for the k-sampling. On the
other hand the use of the density clustering enables us to
select data only from the users in the clusters, where events
occur in order to analyze the events in more detail.

Event Identification: Our technique is based on our
belief that when an interesting event occurs there would be
a cluster from users that “gathered” at the event. We have
validated this belief by identifying several concerts that actu-
ally took place in Beijing, retrieved from CHINA DAILY1.
All the concerts that we examined formed clusters whose
center is approximately the location where the event was
hosted. For example we investigated a concert that took
place in Beijing Concert Hall in Xicheng District on the Feb
7 2008 at 7:30 pm. This is illustrated in figure 4 by the light
blue cluster whose center at 6.20 was: 39.90818171987097,
116.37933930159906. The small distance among the clus-
ter’s center and the Beijing Concert Hall (approximately
200m) is due to the Beihai Park, where no taxis can enter
(and this can be found by the gap in the center of the big red
cluster). However, if we analyzed other data as well, such
as the direction of the users towards a point we could fur-
ther increase our confidence about the location of the event.
Nevertheless, as the times goes by the cluster’s center moves
constantly towards the actual location of the event.

The cluster that we study scaled in size over time and its
maximum size was observed at 7.20. The observation of the
cluster’s size over time enables us to approximate the time
interval when the event takes place. In most cases, when an
event occurs, the size of the users gathering increases over
time, until it reaches a peak and then it decreases, which
enable us to estimate the actual time of the event as the
peak of the cluster’s size. Moreover, the retrieved data at
that time point will be more accurate for the event. For
example the center of the cluster will be much closer to the
event’s location than it will be an hour later.

4.3 Clustering
In this section we present the advantage of our dynamic

clustering compared to the standard Optics algorithm for
every iteration, and we present the variation of the clusters
with regard to the used variables.

The benefit of our technique relies to the fact that we only
need to re-process a subset of the data in order to identify

1http://www.chinadaily.com.cn
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Figure 3: Snapshot of all data
points at 6:20 of 7/2/2008
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Figure 4: Detection of Clusters us-
ing DENSE
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Figure 5: Detection of Clusters us-
ing DENSE with MinPts = 60
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Figure 6: Output with Uniform
Sampling
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Figure 7: Overhead Comparison
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Figure 8: Clusters Variation under
different MinPts, Epsilon

the clusters, but the result is identical to the original Op-
tics algorithm. In figure 7 we compare the processing time
needed for the clustering for both techniques with confidence
intervals, to present the minimum and maximum processing
times. The clustering involves the data received in the 7th
of February 2008, and the time period to trigger the cluster-
ing algorithm is 20 minutes. This experiment was executed
in a Intel Core i5 laptop with 4GB of RAM, which is a
more controlled environment for the measurements. In our
experiments, we use a large time interval as a period (20
minutes), and so the percentage of the taxis that change
their geographical location among two sequential time peri-
ods is on average, approximately 50%. Note however, that
when 50% of the points are updated the percentage of the
points, affected due to their relationship is a lot higher, and
our technique needs to update all the affected points as well.
We compare the processing times using different percentages
of points variation. More specifically we compare the tech-
niques when the points that change their location during a
time period are 10%, 25% and 50%. As can be seen from
the figure DENSE has a great advantage over the standard
Optics algorithm when the percentage of changing points
is low. This happens since DENSE would not need to re-
process most of the points that remain the same (except
from those which are affected from the changes). Thus, in
a system with numerous points where only a small fraction
changes over time (i.e. when a system utilizes static sensors
along with the moving ones or when some cars remain static
due to congestion or because they have parked) DENSE has
a significant performance improvement. However, as the
fraction of points that change over time increases the gap is
decreased. Note that when all points change, DENSE will
reflect an identical processing time with Optics, since all the
points will be processed, as in the original implementation.
In figure 8 we present the variation of the amount of clus-

ters under different values for the MinPts and ε variables,
for the data points at 6:20 of 7/2/2008, and we show why
we set the variables as MinPts= 30points and ε ' 1km.
Note that the x axis is different for each of the variables.
We variate the MinPts variable from 10 to 100, while the ε
variable is set to 1km. It is obvious that when the MinPts

value is low a lot of clusters can be identified, however they
will not be important events, if the MinPts to form a clus-
ter inside a radium of 1km is small. As the MinPts variable
increases the amount of identified clusters is reduced, since
we will only identify denser clusters. When the MinPts is
set to a high value the clustering will identify only extremely
dense clusters, which should be important, but other more
sparse but important events will not be identified. Thus, we
set MinPts as 30, so that all important events will be iden-
tified, without needing to sample from unimportant clus-
ters. Moreover, we variate ε from 100m to 2km when the
MinPts is set to 30. As can be observed from the figure,
the amount of clusters increases when the ε value increases,
until it reaches 1km. This happens since there are more
clusters that can be identified with a specific MinPts value
when the radius is increased. However after ε has reached
1km it starts decreasing, since the range will be so large
that some of the nearby clusters will be merged. However,
this might prevent us from identifying events since we will
consider two separate events as one. Hence, we have set ε
as 1km. Nevertheless, the selection should be based on the
specific setting and the events that should be identified (i.e.
only extremely dense clusters should be considered when we
need to identify a major concert).

4.4 Comparison
In this section, we compare DENSE with D-Stream [9],

in terms of clustering quality. We choose D-Stream for the
comparison since it is a well-known approach that has been
proposed in the literature for dynamically clustering streams
of data. Like our approach, D-Stream aims to cluster only
the subset that changes over time in order to be able to cope
with data streams. While our technique manages to achieve
that through the ordered list, D-Stream uses grids to di-
vide the spatial area and to avoid re-clustering in grids that
have not been changed. The processing time in D-Stream
depends on the size of the grids. Dividing the spatial area
to smaller grids results on a highest processing time since
more grids would typically change over time. However, the
values that we set on our experiments for D-Stream pro-
duces a slightly faster -less than 5%- processing time than



 39.6

 39.8

 40

 40.2

 40.4

 40.6

 115.5  116  116.5  117  117.5

L
a
ti
tu

d
e

Longitude

Figure 9: Detection of Clusters us-
ing D-Stream
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Figure 10: Comparison with DB-
SCAN
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Figure 11: Sampling Error- Dis-
tance
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Figure 12: Sampling Error - Speed
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Figure 13: Energy Usage
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Figure 14: Latency

DENSE. D-Stream identifies dense and transient grids (tran-
sient grids have more points than the sparse grids but less
than the dense ones), creates a cluster for each dense grid
and merges iteratively the clusters of neighboring grids that
are either dense or transient. Afterwards, it updates the
clusters based on the evolution of the grids. In figure 9
we present the output of D-Stream for the same scenario
(data/time) as we illustrated for our dynamic clustering ap-
proach. We have set the length of the grids to 0.02, similar
to our ε radius variable. The disadvantage of D-Stream is
that the grid’s density represents the whole area of the grid,
while in DENSE each point identifies the local density in
the defined radius. Hence, a cluster that has its points in
the borders of four grids might not be found. This squared
structure inevitably lead us to use a smaller MinPts value
than in our approach, to be able to instantiate similar clus-
ters. When we set large values for the MinPts (close to
30) to extract the clusters with D-Stream, especially for the
transient grids, it produced a lot of small clusters, since
there were not enough neighbor grids to be merged with
that amount of points. On the other hand, the use of small
values led to a few enormously large clusters since several
clusters found transient grids and merged together. Thus,
we have tuned the minimum points for a transient grid to
12 and for a dense grid to 15 that provides almost the same
amount of clusters with DENSE.
As can be observed from figure 9 their approach is able to

identify most of the clusters. However, several clusters were
merged together, since they were adjacent grids. Consider
for example a left grid with a lot of points in its upper-left
corner and a neighboring right grid with a lot of points in its
lower-right corner. Although these points are far from each
other the grids are going to be merged in D-Stream. Hence,
this drawback of D-Stream caused the disappearance of the
light blue cluster, that we had identified in our use case,
and it proves that this technique cannot be used for event
detection since a lot of events will be lost. Moreover, we
can observe that the use of a smaller MinPts value led to
the instantiation of small clusters. However, we could easily
prune these clusters when they contain less than 30 points.
In figure 10 we illustrate quality of the clustering for DENSE

and D-Stream compared to DBSCAN which is a state of the

art density algorithm. DBSCAN was selected for the com-
parison rather than Optics, so that the comparison would
be fair, because DENSE shares the same logic with Optics.
Thus, we provide the distance among the centroids of the
DBSCAN’s clusters compared to respective DENSE and D-
Stream clusters. As can be seen from the figure DENSE
manages to identify the same clusters with DBSCAN, with
a small distance that ranges from 0 to 86m depending on
the cluster. That proves that all of the clusters had almost
the same points in the result set. On the other hand the
D-Stream clustering failed to identify several clusters that
DBSCAN found (presented as distance of -100m) and the
identified clusters had a distance that ranged from 87 up to
1142 meters, compared to DBSCAN. Thus, we conclude that
D-Stream fails to provide similar results to the well-known
density clustering techniques.

4.5 Sampling
Finally we examine the effectiveness of our sampling ap-

proach. We present the accuracy of DENSE compared to the
actual result when all the points from the clusters are used
in the processing. Additionally, we compare our approach
with performing random uniform sampling on the clusters.
We choose uniform sampling for the comparison since it is
a common technique for sampling.

We state that the sampling reflects the percentage of points
that is used from the clusters. In our database, and for the
specific settings we have defined (MinPts=30, ε ' 1km) the
clusters (along with the ones that we filter due to repetition)
involve approximately the 30% of the whole database. Thus,
when we sample for example 10% of the clusters this is 3%
of all the points in the specific time period.

Our goal in the specific experiment is (i) to identify the
center of the cluster, when the event actually occurs, as we
proved in the use case and (ii) to identify the average speed
of the users within the cluster. Although we are not able to
extract more interesting events due to the limited data in
T-drive, in a real application where we can retrieve multiple
types of ADUs from the selected users we could provide more
interesting application specific events.

Error Metrics. Since our mechanism is based on sam-
pling, it is expected that the results would have a deviation,



compared to the results we would get by processing all the
ADUs in the given geographical area. In order to exam-
ine the effectiveness of DENSE we rely on two error met-
rics. First we use the Euclidean distance among the actual
center of the cluster and the estimated one through sam-
pling. Hence, we define the sampling error metric ∆i as the
expected absolute difference between the estimate location
(lat′i, lng

′
i) and the exact location (lati, lngi) of the clus-

ter’s center: ∆i =
√

(lat′i − lati)2 + (lng′i − lngi)2. More-
over, when we compare the average speed among the actual
and the one estimated from sampling we use the following
error metric: ∆i =

√
(speed′ − speed)2.

In figures 11,12 we present the average Sampling Error of
all the clusters, produced at 6:20 of 7/2/2008, to identify
the center of the cluster and its average speed, along with
the minimum and maximum error, for several sampling per-
centages. We also compare our k-sampling technique by
sampling k points, that correspond to the sampling percent-
age, by performing random uniform sampling on the set of
the clusters. Note that, the DENSE system has filtered the
large red cluster due to its repetition.
As expected, the output is dependent to the amount of

points that we sample, and thus when we use a higher sam-
pling percentage the results are more accurate. However, we
can observe that when we use 10% of the sample we get an
average error of approximately 165m, and an error of 347m
on the worst case. On the contrary the uniform sampling
provides an average error of 422m for all the clusters. When
the sample size increases to 40%, we can even identify the
center of the cluster in less than 111 meters on average and
within less than 215 meters in the worst case, presented by
the confidence intervals, while the uniform sampling is able
to identify the center of the cluster with an error of 133m
on average and 431m in the worst case. Moreover, with a
sampling percentage of 90% from the clusters, we can iden-
tify the events with an error which is less than 22 meters
on average. As can be seen our technique outperforms ran-
dom uniform sampling in all cases and it is able to provide
accurate results even with a minimum sampling size.
Figure 12 presents a similar experiment with figure 11,

but it illustrates the error of the average speed of the de-
vices within the cluster. As can be observed DENSE can
provide accurate results even with a minimum sampling size,
since the average error is 3.25km/h when the sample size is
10% and it decreases as the sample size increases. Addition-
ally, we illustrate that our technique outperforms random
uniform sampling especially for a small sample, where the
selection of the optimal points is very important. The differ-
ence among the two sampling techniques compared to the
previous experiment is smaller, because the ADUs in the
previous experiment depend on the location while in this
experiment this is not always the case. For example typi-
cally all the taxis in the same geographical location will have
a similar speed. However, some of them might have slowed
down, stopped or parked.
Figure 13 illustrates the energy savings from the sampling

for the same setting with the previous experiment. This de-
rives from the amount of ADUs that were transmitted to the
system for processing, since each ADU requires energy from
the mobile device to send the ADU and the respective energy
consumption for processing the ADU in our system. Thus we
present the amount of transmitted ADUs for different sam-
pling percentages and the percentage of the ADUs transmit-

ted out of the total ADUs, since the sampling percentages
refer to the amount of ADUs produced from nodes, within
the clusters. Thus, for a sample of 10%, where we illustrated
that the average error is approximately 165m from the cen-
ter of the clusters and 3.25km/h from the actual speed in
the clusters, we used only 168 points, which is only the 1.6%
of all the points in the dataset for the specific timeperiod.
Similarly the sample size of 40% is the 6.8% of the whole
database with 706 points and the sample size of 90%, whose
average error was less than 22 meters and 0.34km/h is ap-
proximately 12.7% of all the points. Thus, we conclude that
using the clustering to determine the events can filter a lot
of outliers and reduce the energy consumption.

Moreover, in figure 14 we present the latency for the clus-
tering and the sampling, for the same experiment. We ex-
ecuted this experiment in a Intel Core i5 laptop with 4GB
of RAM, that provides a controlled environment. As can be
observed the clustering takes almost the same time, which
is approximately 4.8 seconds, for all cases. The sampling
time though depends on the sampling size since when it is
increased, the algorithm needs to select more points, thus
it traverses through the while-clause more times and the
selection and the reassignment of the new kernel density es-
timators increases the processing time. However even for a
sample size of 90% our approach takes almost 11.2 seconds,
to select the optimal points of 10,357 points, that provides
a high accuracy as we presented before. Nevertheless, the
latency is low compared to the time interval we consider
as period (20 minutes) and as we explained, a smaller time
interval would provide lower processing times for the clus-
tering and thus lower latency.

5. RELATED WORK
Participatory Sensing systems have recently become ex-

tremely popular for processing high-throughput, low-latency
data streams and a number of systems have emerged in the
literature [13], [35]. Hull et al in CarTel [17] propose a mo-
bile sensor computing system for traffic monitoring. They
use a query-oriented programming interface, to handle the
data from the sensors, opposed to our stream processing ar-
chitecture. Additionally, they suggest a “carry-and-forward”
delay-tolerant network, which is opposed to our mechanisms
that suggest a realtime processing logic.

Distributed stream processing systems have recently be-
come extremely popular for processing high-throughput, low-
latency data streams. A number of stream processing sys-
tems have emerged in the literature (including our own work
on the Synergy middleware [31]). The research in this area is
very rich and many papers have been published on detailed
aspects of the technology such as data models, operators and
query languages, resource management, scheduling, admis-
sion control policies, composition and placement algorithms,
etc. Although, these research efforts have focused on high
performance stream processing engines, our work focuses on
the problem of sampling out of the available data streams
to identify events of interest when the requested system ca-
pacity is incapable to handle all the data streams.

Clustering has been widely studied and many algorithms
have been proposed. Several works aim to cluster moving
objects that move along paths close to each other for a cer-
tain time [23, 6, 20, 18]. However, in our approach the
users move towards an event from different places, so they
have different directions and speeds. Moreover, we do not



need heavy-weight algorithms that constantly track the tra-
jectories of the objects, but we only need to know the lo-
cation of the active users for each time period. DBSCAN
[32] is a well-known algorithm for density clustering, that
identifies and clusters dense regions, separated by low den-
sity regions. OPTICS [4], that we extend in our approach,
is able detect meaningful clusters in data of varying den-
sity, while DBSCAN cannot. Several approaches exist that
deal with the clustering of data streams [1]. They aim to
provide a good clustering using a small amount of mem-
ory and time but they do not consider density clustering.
D-Stream [9] and DenStream[8], are techniques for density
clustering over data streams. As we proved in the experi-
mental section, our technique outperforms D-Stream. Den-
Stream provides an approximation of the actual clusters,
based on the DBSCAN, while our approach provides iden-
tical results with the OPTICS algorithm. Authors in [25]
present SCUBA, that develops moving spatio-temporal clus-
ters and perform intelligent load shedding for the data. As
we discussed, moving clusters cannot be used in our ap-
proach to cluster the users of an event. Moreover, opposed
to DENSE, they consider that every point belongs to a clus-
ter, and they merge moving clusters with similar speed and
direction even though their overlap can be only a few points.
Finally, they use a grid structure for the clustering and they
select the data tuples based on their distance to the centroid
while DENSE selects the most representative ones. Authors
in [26] propose EDACluster that is also based on grids to
perform density clustering.
The research in the area involving the problem of sam-

pling is very rich and several approaches have been proposed.
In [24], the authors perform region sampling in sensor net-
works, to reduce the energy cost rate and use statistics to
predict the optimal sampling plan. However DENSE is able
to sample only specific regions where events occur. Al-Kateb
et al in [2] propose an algorithm to extend the reservoir sam-
pling, that selects a uniform random sample of a given size
from an input stream of an unknown size, with an adaptive-
size reservoir. However, our technique driven by the appli-
cation logic, outperforms uniform random samples. Halkidi
et al in [15] study the problem of online clustering, however
the focus is on high dimensional sensor data. In [5] they pro-
pose a k-sampling technique that aims to select the most re-
cent data, based on the timestamp. Stratified Sampling [10]
is another well-known method for efficient sampling from
a population, where the members of the population consti-
tute homogeneous subgroups(stratums) and random sam-
pling is performed for each stratum. However, we proved
that DENSE outperforms random sampling.
A similar paper to our approach is [22] where the authors

propose a technique for biased sampling, where the probabil-
ity that a given point will be included in the sample depends
on the local density of the data set. Our technique differs
since we sample only within the clusters. Their approach
might abandon clusters of lower density completely, which
can lead to unidentified events. Authors in [21] propose
Watchdog, an event detection framework that aims to clus-
ter the right sensors to meet user specified detection accu-
racy during runtime. In order they determine the accuracy
detection they generate clusters of each possible size, and
examine them using Hidden Markov Models. This approach
cannot be used in stream data and when the data size is too
large, since the clustering would need a lot of time. Palmer

and Faloutsos in [28] propose an algorithm to sample for
clusters, using density information. Their approach works
under the assumption that clusters have a zipfian distribu-
tion and is designed to identify clusters when they differ a
lot in size and density, and there is no noise. Although their
approach is an one-pass algorithm it provides an approxi-
mation and it is not adaptive, thus, it has to be executed
even if no points have changed.

Several event detection approaches have been proposed in
the literature to address in-situ event identification, espe-
cially for wireless sensor networks that emphasize in the en-
ergy savings. Regions of similar sensor data are detected in
[34]. Although they use Kernel Density Estimators to iden-
tify similar sensor readings this cannot be extended for Par-
ticipatory Sensing Systems where the mobile devices might
produce different readings for the same event (e.g., speed).

Authors in [3] focus on finding events described by a query.
This is a complementary approach to ours; we take a more
exploratory approach since: (i) they do not focus on the
detection of the phenomena (events), but they assume that
the description of the phenomena is given, (ii) the selection
of the tuples is based on the distance from the phenomenon
and thus all the tuples in the specific region will be returned,
while we choose good representative users to provide data,
(iii) they use different approaches to solve the problem thus
they do not provide any clustering or sampling techniques.

6. CONCLUSIONS
In this paper, we have presented DENSE, a system that

aims to improve user participation in community-based par-
ticipatory sensing systems. DENSE makes it easy for users
to sense, collect and share data units which are used to iden-
tify real life events when they occur. We propose online
techniques to cluster the user data and select only a subset
of users in these clusters for sampling to identify and track
the events over time. The advantage of our technique is that
it filters the noisy points through clustering, based on the
application logic, and that it considers the data streams that
depict the highest interest when selecting the data sample.
Detailed experimental results illustrate that our approach is
practical, efficient, depicts good performance and is able to
provide accurate results with a relatively small sample size.

For our future work we plan to extend our approach to
examine the capabilities of the devices in real-time, in terms
of availability, battery levels etc., to include the resource
capabilities of the devices when we decide which ones should
be selected for the sampling.
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