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Abstract—The proliferation of mobile networking and the
increasing capabilities of smartphone devices in the recent years
have resulted in transforming mobile smartphone devices into
ubiquitous sensing platforms. In this new class of “Community-
based Participatory Sensing” systems, users actively participate in
the data collection and sharing for the benefit of the community,
in a wide range of application areas from entertainment, to
transportation, to environmental monitoring. These approaches,
however, generate large amounts of transient data streams,
leading to real-time computational challenges. In this paper we
propose sampling algorithms on streams of mobile data generated
by ubiquitous sensing devices that need to be processed under
time constraints. In our approach users participate in the system
by sensing and sharing streams of data. The system then uses
a sampling mechanism to select a subset of data streams that
preserves the characteristics of the stream data and provides the
highest “information gain” to the system, given the real-time,
budget and resource constraints. Detailed experimental results
illustrate that our approach is practical, efficient and depicts
good performance.

I. INTRODUCTION

The proliferation of location-aware smartphone devices
(iPhones, GPS, PDAs, etc.) in the recent years have made
it possible to monitor and track the movement of humans in
order to capture and understand social dynamics or identify
events of interest for the community. For example, in traffic
monitoring systems such as MetroSense [1] and VTrack [2],
users equipped with smartphones outfitted with a wide array of
sensing capabilities such as GPS, WiFi, microphones, cameras
and accelerometers provide real-time traffic data information in
the form of travel times or vehicle trajectories. By combining
traffic data streams from different users, important information
and events of interest can be extracted i.e., traffic congestion;
these can be used in a variety of ways, for example, informing
drivers and making suggestions for alternative routes to reach a
destination faster. Similar examples can be found in earthquake
warning detection systems [3] and location-based services such
as personalized weather information and identifying areas of
good WiFi connectivity [4].

These approaches, however, invite a wide variety of users to
participate, and can thus generate large amounts of transient
data streams. We argue that in such a system, not all data
streams are equally important. The “true value” of the user
data depends on various factors, including the characteristics
of the sensing data, the user context (e.g., geographic location),
available resources (e.g., communication, power), the density
of the area where data is extracted, the elapsed time from the
previous measurements, etc. Thus, a fundamental question is

how to choose a suitable representative sample from the stream
data that preserves the characteristics of the data, while saving
in processing and communication costs when obtaining the
data and satisfy any application constraints.

The problem of sampling is challenging due to the fol-
lowing aspects that should be taken into consideration: (i)
Efficiency: we need a method to efficiently represent the
stream data that preserves the properties of the spatio-temporal
information, with minimum errors; (ii) Real-time processing:
the sampling technique must be able to process mobile stream
data under real-time and resource constraints; (iii) Complexity:
the technique needs to be able to cope with very large data
streams generated from mobile phones. The amount of data
that the system is capable of processing is constrained by
two major factors: First, the resource availability across the
distributed system that will collect and process the stream
data. Second, the cost for the application to receive the data.
There is a tradeoff between the approximation quality, and
time and space complexity. Furthermore, we expect that users
may wish to receive some compensation to participate in
such a system, so we need to reward them for the data they
provide. Hence, the system has to consider the number of
data streams that can be supported by considering both the
available resources and the corresponding budget paid to the
users. These constraints make the sampling process even more
challenging, since we have to select the most representative
subset of data streams, that would not exceed the system’s
resource constraints, considering the respective cost as well.
Although we have witnessed commercial participatory systems
where users provide their data with no compensation, e.g., to
use the service such as the traffic data in Google Maps [5],
we expect that this would not be the case in other non-popular
services where participation is needed. For instance, users
would not willingly participate in an environmental monitoring
application where their local data are sensed and sent for
analysis or in applications where human effort is needed
such as taking a picture of polluted places. However, the
accuracy of the results in such applications depend on user
participation. Hence, we consider that users may receive a
monetary reward for the services they provide and we expect
that the monetary compensation provided could attract many
users for participatory systems.

In this paper we address the problem of sampling streams
of mobile data generated by ubiquitous sensing devices under
time constraints. We consider this as an important capability
for participatory sensing applications which are rapidly grow-
ing in popularity. Specifically, in our approach users participate
in the community by sensing and sharing streams of data.



Fig. 1. Trajectories of the mobiles.

They define their offers and they receive a monetary reward
for the stream data they provide. The offers reflect the quality
of the data provided along with the corresponding cost for
providing this data. The system aims to select the offers that
preserve the characteristics of the stream data while providing
the highest “information gain” to the system, given the real-
time resource and budget constraints. The problem of selection
can be reduced to the well-known Knapsack problem and thus
we introduce greedy sampling mechanisms to select the subset
of data streams. We perform a study of different sampling
mechanisms that belong to the family of Budget Feasible
Mechanisms to examine the effect of information quality on
the data samples. The sampling technique works cooperatively
with our rate allocation mechanism. The goal of the rate
allocation mechanism is to determine the maximum amount
of stream data that can be processed in the system based on
the timeliness constraints (i.e., deadlines) of the applications
and the system resource availability. We use an adaptive rate
allocation technique that uses measurements of elapsed times,
application projected latencies and measurements of resource
availability to dynamically determine the rate allocation for
the stream processing applications to meet timeliness and rate
demands. We have implemented a real-time traffic monitoring
application in our system using the Berkeley Mobile Millen-
nium dataset [6] and present detailed experimental results on
PlanetLab. Our experimental results illustrate that our approach
is practical, efficient and depicts good performance.

II. SYSTEM MODEL

We assume a spatial decomposition of the geographic area
into a number of non-overlapping regions, that enables the
system to perform localized processing based on the stream
data at each region. The organization of the area into regions
can be done with respect to the size of the network, possibly
defining several tiers at different levels of granularity, ranging
from small local areas at the lowest tier, to the entire network
area at the highest tier; this allows the system to collect
measurements from all mobile phones in a scalable manner[7].

Let S denote the mobile sensor network of m mobile de-
vices that monitor and report measurements from the observed
phenomena. Each mobile device generates data streams; each
data stream consists of sequences of individual chunks of
data, referred as Application Data Units (ADUs). Data streams
represent short messages that are triggered locally at the
phone using sensing devices present on mobile phones such as
microphone, camera, GPS, accelerometer and motion sensors;
the size of a data unit depends on the type of the application.

Each mobile device i moving in the Euclidean space
is characterized by the following set of information

Li(xi, yi,ADUi)(t) , i ∈ 1, ...,m, for every time instance
t, where the pair (xi, yi) corresponds to the position of the
device (latitude, longitude), and ADUi is the data stream
generated. Examples of data streams are: <latitude, longitude,
video data, timestamp> (for surveillance monitoring applica-
tions) or <latitude, longitude, accelerometer data, timestamp>
(for earthquake monitoring). We consider that data streams
are triggered concurrently and independently from different
smartphones, as they are sensed or observed by the application
components. Data streams from multiple mobile sensors are
streamed into the distributed stream processing system for
further processing based on the application logic. Although
smartphones are powerful enough to do some local processing
instead of sending the raw data streams, for this paper, without
any loss of generality, we consider that only raw data are sent.

Mobile users express their willingness to participate and
share their sensed data, by presenting their offers. Each user
i defines its offeri(t) as a pair of values: (i) QoIi(t), and
(ii) costi(t) for its produced ADUi(t) at time t. The offer
expresses the willingness of the user to have its sensed data
shared with the community and reflects the importance of the
specific stream data generated by the mobile node i to the
application, along with the cost to the system to receive that
stream. Both values should be transmitted when a mobile node
wishes to participate in the sampling process. The QoIi(t)
value is computed based on application-defined functions, as
defined in Section III. The cost can be expressed in terms of
a payment that the user wishes to receive and could be (i)
a fixed price payment provided by the system, (ii) provider-
defined (e.g., the user may be charged for the data he/she
uploads in the system by its wireless provider), (iii) user-
defined (e.g., users may also want to charge an amount for
the energy consumption).

In our system we assume that all users are cooperative, that
there are no malicious users and that users submit their “true”
QoIi(t) information and get compensated for the information
they provide.

Each application q is characterized by a Deadlineq, a
relative metric that represents the end-to-end time constraint
required for the application q to process a number of ADUs.
Hence, the rate of the application Rq is defined as the amount
of data units that the system processes within its Deadlineq.
Multiple sampling operations can be carried out with different
deadlines.

III. OUR APPROACH

In this section we define our optimization problem, discuss
our sampling techniques and our rate allocation technique.

A. Optimization Problem

Problem Consider regions R1, R2, .., Rk of a given geo-
graphical space where M mobile nodes are located. Each mo-
bile node i produces streams of events (ADUs) over time t with
an information quality QoIi(t); this reflects the relative utility
(importance) of the stream data provided by the mobile phone i
to the system, and a cost costi(t). The system selects multiple
data streams based on its Budget, so that the information
quality provided to the system is maximized. The selection
of the streams should also consider the resource constraints,



imposed by the system resources, on the Rateq that the system
can support so that the application q can meet its relative
Deadlineq, determined by the rate allocation mechanism.

Thus, our goal is to determine those ADUs, that maximize
the information benefit, subject to the constraints. This is
expressed as follows:

Maximize
∑
i∈M

Informationi(t)

subject to
∑
i∈M

costi(t) ≤ Budget∑
i∈M

ADUi(t)/Deadlineq ≤ Rateq

Our sampling technique aims to solve this constrained max-
imization problem at run-time, in order to maximize the
system’s information profit by selecting the most impor-
tant streams, subject to the system’s constraints. The factor∑

i∈M Informationi(t) is general and refers to the information
benefit from the data streams that were selected. However, the
maximization problem can provide different solutions. One
possible solution would be to set

∑
i∈M Informationi(t) as∑

i∈M QoIi(t) or another solution could aim to maximize the
number of ADUs, but with a lower individual QoIi(t) and
costi(t). Hence, we propose different strategies to solve our
maximization problem and compare their performance.

The fundamental idea of our approach is to segment the
trajectory of each mobile device into piece-wise linear parts,
based on the spatial characteristics of the trajectory. This
segmentation is static and can be determined based on the
regions defined in the geographic area. The intuition is that
when there are multiple segments within a given geographical
region, the system can assign different costs per segment based
on the availability of the segments. Thus, we can express it as
an optimization problem which trades off the quality of the in-
formation, with resource cost and time complexity. As we aim
at sampling trajectories, another intuitive representation would
be to segment the trajectories along the temporal dimension.
However, we argue that such a representation would result in
higher complexity as each trajectory would be modeled with
possibly different number of time periods of varying duration
and we would then have to compare the different segments in
order to identify the corresponding geographical regions.

We implement a sampling component (discussed in section
III.B) at each mobile node responsible for obtaining the paired
offers and decide which data streams will be sampled. More-
over, this component works in concert with our rate allocation
mechanism (discussed in section III.C) which determines the
maximum amount of stream data, that the system can effi-
ciently process, depending on resource availability. Suppose
there are mi mobile nodes in region Rj . The goal of the
sampling mechanism is to select a subset of data streams si,
(where si < mi) to be processed.

Sampling Error. We compute the sampling error to evalu-
ate our approach, similar to [8], as follows. In order to estimate
the average value of the mi data streams generated in a specific
time period in region Rj , we sample s̄i (s̄i < mi) records
from it (x′

1, x
′
2, .., x

′
si). The average of the sampled records

y′i(y
′
i =

∑s̄i
j=1 x

′
j/s̄i) can be considered as the estimate of

the exact average (yi) of all the mi records. Hence, we
define the sampling error metric ∆i as the expected absolute
difference between the estimate average and the exact average:
Sampling Error: ∆i

2 = E[(y′i − yi)
2]

Moreover, we define the percentage variation of the
estimate average compared to the exact average:
Sampling Error Percentage: ∆i

2 = E[(
(y′

i−yi)
yi

)2]

Our goal is to maximize the
∑

i∈M Informationi(t) rather
than minimizing the error metric, although these two formu-
lations are not always proportional. Consider for example that
Informationi(t) depends on a utility function where each spa-
tial region has a specific weight. We can infer that maximizing
the

∑
i∈M Informationi(t) would decrease the Sampling Error

in some regions with high weights, while increasing it in others
and thus the ∆i

2 would not be absolutely minimized. However,
the application’s target will be met and the error would be
relatively minimized with respect to the defined objectives.

Information Quality. We assume that each stream of data
has a “value” expressed as a function of time. Two fundamental
questions arise when defining the utility of the information that
a data stream has for the system. First, not all stream data have
the same utility (i.e., importance). Typically, some data streams
may have higher utility than others and this relative utility may
change dynamically at run-time. Second, the relative utility
of the stream data might not be directly related to the time
deadline with which the stream data needs to be delivered to
the system. Our goal is to consider these two parameters of
information utility and application time deadline in concert,
when determining the appropriate data streams to be sampled.

Utility functions. We use utility functions (that we call
QoI functions) to express the benefit of providing a stream of
data to the application. Although our proposed QoI functions
are mainly linear functions over time, in the general form the
utility functions might have different forms and shapes to be
able to meet the demands of each application [9] [10]. These
functions form the foundation of our sampling approach that
aims to maximize the information benefit of the system. In
our previous work we have shown that the selection based
on the QoI functions can improve the accuracy of the results
compared to a uniform selection [11]. Moreover, as will be
presented in the experimental section, combining several utility
functions to compute QoIi(t), further increases the accuracy.

In the experimental evaluation we investigate the use of dif-
ferent QoI functions, that, in their general form are expressed
as: QoIi(t) = QoIi(t− 1) +

∑
CurrentValuesi(t).

In every run of the sampling mechanism, the QoIi(t) value for
a mobile node i is adjusted based on the CurrentValuesi(t),
that represents the additional benefit in the specific time
interval, computed by the utility functions. These functions are
predefined, application-specific, based on the application logic
and are used by each mobile device independently at run-time,
to compute its QoIi(t) value at each time instance t. Since
the QoIi(t) value is adjusted during the runs of the sampling
mechanism, based on the application-specific functions, the
chances that a mobile node is selected for sampling increase
as its QoIi(t) value increases.

We present examples of different utility functions in Fig-
ures 2, 3 and 4. Figure 2 represents a utility function where
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the QoI value increases over time. The step increase of this
utility depends on the current state and the measured values.
Figure 3 represents the case of a utility function where its
value increases when a data stream occurs and then decreases
as the data stream becomes distant in time. This is the case,
where for example, the utility function represents the event of
congestion in a traffic monitoring application; receiving this
data stream has high importance for the system, while when the
event is reported by multiple individuals its value decreases.
Finally, figure 4 is similar to 2, however it has a different slope.
This utility function represents, for example, the case where
a mobile moves through geographic regions. While it moves
in the same region, the incremental step remains the same,
however changing region results in a different step increase.

B. Sampling

Our sampling technique is based on a family of mech-
anisms called Budget Feasible Mechanisms, initiated by
Singer [12]. The basic idea is to select the optimal offers, that
provide the highest information utility, where each offer has a
QoIi(t) and a respective costi(t), without exceeding the total
Budget or resources. It has been shown that determining the
optimal offers, where each offers has a utility with a respective
cost and the total Budget cannot be exceeded, is an NP-hard
problem, as it can be reduced to the well-known Knapsack
problem. The Knapsack problem states that given a Budget B
and a set of items N = {1, .., n} each with a cost ce and a
utility ue, find a subset of items S that maximizes

∑
i∈S ui

under the budget constraint. Hence, our problem is similar to
the Knapsack problem, although we have additional constraints
that need to be satisfied. The family of Budget Feasible
Mechanisms, can be solved with a number of approximation
mechanisms, that need to depict specific behavior [13]. Thus,
these mechanisms need to be: (i) Truthful: sellers are assumed
to report the true cost for their offers, (ii) Computational
Efficient: the algorithms must be computed in polynomial time,
(iii) Budget Feasible: the mechanism’s rule for determining
offers should not exceed the budget, and (iv) Approximation:
the determined subset, from the set of bids, must yield the
highest possible value for the buyer. However, in our approach
we provide additional real-time constraints, to ensure that the
amount of the offers would not exceed the available resources
of the system. We import these constraints without affecting
the complexity or the four behavioral characteristics that the
mechanism depicts.

In our approach all nodes that wish to participate in
the sampling submit their offers (QoIi(t), costi(t)) to the
system. Our adaptive rate allocation technique informs the
sampling components about the amount of ADUs that the
system can process in the next time window (Rateq) to meet
the application Deadlineq. Thus, the sampling component will
be able to select the nodes with the highest offers, based on
the chosen sampling strategy, and will inform them to transmit

their ADUs. At the end of the sampling process, the smallest
QoI value from the set of the selected offers (that we call
Threshold) is identified. This value is returned to the nodes
that have not been selected for sampling, so that in the next
run they can choose not to submit their offers, if their QoIi(t)
value is less than the Threshold. As we will show in the
experimental evaluation, this simple boundary, results to an
important efficiency improvement.

Our approach aims to receive data streams that provide the
maximum information profit. However, each ADU transmitted
has a corresponding costi(t). Thus, we define the Informa-
tion Gain value for each data stream generated at time t by
mobile phone i, as: Information Gaini(t) =

QoIi(t)
costi(t)

The Information Gain is defined to be proportional to QoIi(t)
and depends on the costi(t) value. Essentially, it provides a
metric to evaluate the data units based on their “value for
money”.

Algorithm Operation. Below we summarize the steps of
our algorithm:

• At each time unit t the mobile nodes i calculate their
(application-specific) QoIi(t) based on local knowl-
edge and information obtained by the application
logic.

• Each mobile node i defines its offeri(t): the QoIi(t)
value and the respective costi(t) that depicts the profit
he/she estimates for the data units provided.

• If the QoIi(t) value is greater than the Threshold,
then the mobile node makes an offer on the sampling
component.

• The sampling component is aware of the system’s
ADU processing ability (Rateq) for the given time
window and Budget, and selects as winners the set
of k mobile phones with the highest offers, that fulfill
these constraints, according to the strategy used for
sampling of the data units (discussed next).

• The winners are informed to send their ADUi(t),
get paid with the corresponding costi(t) and set their
QoIi(t− 1) to zero.

• All the other mobile users that participated in the
sampling process receive the minimum winning price
(smallest QoIi(t) value from the set of the winning
offers), in order to set this value as their Threshold
in the next run.

Sampling Strategies. We investigate three sampling strategies.
First, we propose a basic mechanism where the cost of each
ADU equals a fixed price called ISAM. Then we present
an extension to that mechanism which is the more realistic
algorithms ISAM+ and ISAM++ where the cost depends on
user-defined prices. All the mechanisms rely on the Rate
Allocation scheme (given in section III.C) in order to define
the number of winners at runtime. Since an optimal solution
is costly to be provided in real-time, as explained above,
we provide greedy algorithms that aim to provide a good
approximation. In all the following strategies, we define as A
the total set of offers submitted for the selection of the sample
by the users.



ISAM is the base algorithm: the mobile nodes selected
from the sampling component, receive the same, predefined
value as their payment. This mechanism is inspired by the
First-Price Sealed-bid Auction, where bidders submit one bid
in a concealed fashion and the highest submitted bids win
the auction. Thus, in this algorithm we try to maximize the
Information Gaini(t) when the costi(t) is a fixed value for
each offer, determined by the system and denoted as K. Since
the system pays the selected nodes with the same amount of
money, regardless of their QoI profit, ISAM is going to choose
these mobile nodes that provide the highest

∑
i∈M QoIi(t)

value. Thus, the maximization problem becomes:

Maximize
∑
i∈M

QoIi(t)

subject to
∑
i∈M

costi(t) ≤ Budget∑
i∈M

ADUi(t)/Deadlineq ≤ Rateq

This Sampling mechanism, works as follows:

1) Order all offers in set A s.t. QoI1(t) ≥ QoI2(t).. ≥
QoI|A|(t)

2) Let Winner set S = ∅ and k = 1;
3) Set costi(t) = K, ∀i ∈ A

4) While
(
k ≤ |A| and |S|+1

Deadlineq
≤ Rateq &&

costk(t) ≤ Budget ∗ (QoIk(t)/
∑

i∈S∪{k} QoIi(t))
)
{

S ← S ∪ {k}; k ← k + 1; }
5) Return set S;

Worst-Case Complexity: Our approach needs to sort the bids
which takes O(n log n), meaning O(|A| log |A|). The while-
clause will repeat at most |A| times, and the assignment
statements inside the while-clause cost O(1), so it costs
O(|A|). Thus, the worst-case complexity of our algorithm is
O(|A| log |A|).

ISAM, is our basic algorithm. However, in a real system,
different users may have different needs(i.e. different 3G cost).
Thus, the following two algorithms where users can define
their payments seem as a more realistic approach.

ISAM+ is an extension to ISAM where the users of the
mobile nodes define the costi(t) of their data streams from
their devices. ISAM+ is also a greedy algorithm. The goal of
ISAM+ is to maximize the amount of ADUs subset to the
system application rates and budget constrains, with respect to
their QoI values. Thus, it aims to select the subset of ADUs
that depicts the highest total QoI, among the feasible subsets
that provide the maximum possible amount of ADUs, based on
the rate constraints. We use this algorithm to explore whether
the selection of more ADUs with probably lower QoI values
can compete with the other algorithms that select ADUs with
high QoI values no matter if the total amount is smaller. The

maximization problem now becomes:

Maximize
∑
i∈M

ADUi(t)

subject to
∑
i∈M

costi(t) ≤ Budget∑
i∈M

ADUi(t)/Deadlineq ≤ Rateq

The algorithm states:

1) Order all offers in set A s.t. QoI1(t) ≥ QoI2(t).. ≥
QoI|A|(t)

2) Let Winner set S = ∅ and k = 1;
3) While

(
k ≤ |A| && |S|+1

Deadlineq
≤ Rateq

)
{

S ← S ∪ {k}, k ← k + 1 }
4) While

(∑
i∈S costi(t) ≥ Budget

)
{

Substitute offeri(t) with the highest costi(t)
from S with the following unallocated ADUx(t)
from A, or with null if such an offer does not
exist;}

5) Return set S;

Worst-Case Complexity: Similarly to ISAM, it costs
O(|A| log |A|) to sort the offers. It costs at most O(|A|) to
iterate through the first while, since the assignments only cost
O(1). Moreover, the second while-clause will be executed at
most |A| times, if we remove all offers. Substituting the offer
with the highest costi(t) costs O(1) if an index is maintained
for the costs. Hence, the second while-clause costs O(|A|) and
thus the worst-case complexity of ISAM+ is O(|A| log |A|).

ISAM++ is an extension to ISAM like ISAM+ with the
exception that ISAM++ tries to maximize the “value for
money” of the data streams when sampling. Again, users can
define the costi(t) of the data streams from their devices.
However, in ISAM+ when a user sets an extremely high cost
compared to the other users, it is more likely to be rejected,
no matter if the data stream has an increased QoI value. On
the other hand, ISAM++ tries to receive as many ADUs as
possible that reflect an increased QoI value compared to their
cost. Thus, the maximization problem becomes:

Maximize
∑
i∈M

Information Gaini(t)

subject to
∑
i∈M

costi(t) ≤ Budget∑
i∈M

ADUi(t)/Deadlineq ≤ Rateq

ISAM++ works as follows:

1) Order all offers in set A s.t. Information Gain1(t) ≥
Information Gain2(t).. ≥ Information Gain|A|(t)

2) Let Winner set S = ∅ and k = 1;
3) While

(
k ≤ |A| && |S|+1

Deadlineq
≤ Rateq &&

costk(t) ≤ Budget ∗ (QoIk(t)/
∑

i∈S∪{k} QoIi(t))
)

{
S ← S ∪ {k}; k ← k + 1; }

4) Return set S;

Worst-Case Complexity: The complexity can be computed
similar to ISAM as O(|A| log |A|).



C. Rate Allocation

In our previous work we have studied the problem of
determining the rate allocation of a distributed stream pro-
cessing application at run-time, in a distributed manner [14].
In this paper, we use this work to determine the incoming rate
of application q (Rateq) subject to the application Deadlineq
constraint and the resource availability in the system. We give
a short description of how this is achieved below:

Let C be the set of application components that can
be deployed in the system, and Rci be the rate that each
component ci will get. The rate of the application Rateq can
be considered as the input rate of the source component.
Every other component has a rate Rci that depends on the
selectivity among components. The selectivity represents the
relation between the input and the output rates of a component.
Every application q is represented as a graph of component
invocations that executes on an input data stream and needs
to finish within Deadlineq. The objective is to maximize the
rates for the components invoked by the applications in the
system so that the QoS requirements of the applications are
met and the resource constraints are satisfied. This is described
as: maximize

∑
ci∈C Rci

In order to ensure that the application executes
within its deadline, the sum of the computation times
of all the components invoked by application q and
the corresponding communication times need to be
smaller than the application deadline. This can be
expressed as follows: maxpath(

∑
ci∈q Compci

(Rci) +∑
ci∈q Commci−>ci+1(Rci)) ≤ Deadlineq

where maxpath is used in the case that the application is
represented as a graph with more than one paths. In the
above equation, Compci

(Rci) represents the average compu-
tation time required for component ci to execute at rate Rci ,
obtained through profiling techniques with low overhead, and
Commci−>ci+1(Rci) represents the corresponding communi-
cation time among components ci and ci+1.

All components on a processor in the distributed stream
processing system are competing for available CPU resources.
This constraint states that the sum of the rates allocated to each
component multiplied by the CPU share required to process
each ADU must be smaller than the fraction of available
resources. For each node we denote:

∑
ci∈n Rci ∗CPUci ≤ 1

We focus our attention on the processing resource (CPU
capacity), as this is the sparsest resource in stream processing
intensive environments. CPUci denotes the cpu share required
for component ci to process one ADU in the period of the
Deadline. The selectivity selci of a component ci represents
the average ratio of the number of output data units to the
number of input data units of ci and depends on the service
run by the component. Then the flow conservation constraint
is represented as: Rci+1 = selci ∗Rci

Discussion. The constrained maximization problem can be
solved using linear programming techniques. In our imple-
mentation the problem is solved in a distributed manner and
thus each component defines its own rate. The rate of the
application’s source component that refers to the input rate of
the application Rateq would then be provided to the sampling
components to perform the sampling.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup

We have implemented our techniques in Java6 with ap-
proximately 5700 lines of code and tested it on PlanetLab.

Traffic Monitoring Application: The experimental evalu-
ation scenario was a traffic monitoring application where the
goal is to identify congested areas in the Interstate 880 in
California in real-time. We used Berkeley’s Mobile Millen-
nium Dataset [6], which includes real time traffic data taken
from GPS-enabled phones, to determine congested areas using
streams of traffic data provided by individual mobile phone
users. That dataset consists of data taken from 77 cars for
the period between 10:00 and 18:00 on the Feb 8th 2008.
Each ADU in the dataset is associated with the following
information: <time, latitude, longitude, speed and carID>. The
results presented are the average over 5 runs.

The application scenario was implemented with 4 main
components: (1) A selection component that receives ADUs
and computes each car’s geographic region and trajectory.
(2) A projection component that projects the latest ADUs,
based on geographic region and trajectory information. (3) A
component that estimates the average speed for the projected
ADUs. (4) A component that defines the congested areas.

The experimental evaluation focuses on the following pa-
rameters: (i) Error metric, (ii) Sampling Size, (iii) Energy
and Cost Efficiency, (iv) Total sent ADUs, (v) Payment and
(vi) Threshold impact.

The Region weights are defined with values from 1 to 10
and the weights are distributed so that the values increase in
accordance with the Region number. Thus, Region5 receives a
higher weight than Region3. The Density weight is defined by
subtracting the number of cars in the current region from the
maximum expected cars which we have set to 10, based on
our dataset. Finally, the Transition weight is set to 10 when a
mobile reaches a new region. Our formulation is generic so that
different regions can have different values for the Transition
weight to indicate the relative importance of the regions. When
referring to regions we define them as a region-trajectory
entity. Hence, Region2-SouthWest is a different region than
Region2-NorthWest, since these two regions can be opposite
lanes to a highway, so they should be treated separately. The
default average speed for the sample regions is set to 27.91,
which is the total average speed from all regions in the dataset.

B. Experimental Results for several QoI functions

In the first set of experiments we evaluate the different
QoI functions’ behavior under the same resource conditions.
In these experiments the base algorithm (ISAM) is used so that
the evaluation can be independent of the ADU cost, which is a
fixed price for all ADUs. Moreover, we define a rate allocation
of 5 ADUs per second which refers approximately to a sample
size of 25% over the available ADUs.

We present 4 QoI functions: (1) Random QoI is our
Baseline function, where the selection is made randomly by
the scheduler, based on the QoS constraints without using
informational criteria, (2) Region QoI is the function where
each mobile receives a specific weight based on the region it
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belongs and has the form of the utility function of figure 4.
(3) Region+Density QoI where both region and density (has
the form of figure 2) weights are computed for the mobile
node and (4) Region+Density+Transition QoI where the 3rd
QoI function is extended with a weight whenever a mobile
node changes region (has the form of figure 3). In this set
of experiments we aim to reduce the Error in relation to
the region’s importance to demonstrate how our technique
approaches the application logic for the sampling.

Figures 5, 6, 7 and 8 illustrate the number of ADUs that
were selected for sampling, rejected or were under threshold
for each mobile node. Figure 5 illustrates the behavior of
the Region QoI function. As can be observed, all the mobile
nodes participate in the sampling process and since they get
paid to provide their data streams, we expect that they will
stay connected to the system. One important observation is
that the ADUs that were selected for the sampling are much
fewer compared to the total number of produced ADUs, and
specifically it corresponds to an average of 22% from the
total ADUs. We should also remark that the majority of the
produced ADUs were below the threshold (62% of the total
ADUs). The fact that these ADUs were withdrawn, infers a
tremendous improvement in the cost, both in terms of energy
and money, since they would have been rejected from the
sampling mechanism anyway.

Figure 6 presents the density weight combined with the
region QoI. As can be seen from the figure, the behavior
of the mechanism is similar to the previous experiment.
Again, we can observe that all the nodes contribute their data
stream samples to the system. Moreover, the percentage of the
selected data streams compared to the total produced ones was
again 22%. Furthermore, 58% of the total ADUs were below
threshold.

Similarly, in figure 7 we present the third function that

combines the density, region and transition weights. All nodes
contribute their data streams as in the previous figures. How-
ever, the selection of the data streams was slightly increased
and the average percentage of the selected data streams was
24%. The percentage of the ADUs that were below the
threshold in this function was 57%.

Figure 8 illustrates the results for the random QoI func-
tion. The average percentage of the data streams selected for
sampling was 22%. As it is denoted from this function, there
was about the same amount of ADUs selected compared to the
previous functions. Thus, we infer that the threshold did not
force ADUs to be excluded from the sampling. The random
QoI technique does not provide an infrastructure to preserve
metrics, such as threshold since every ADU may be chosen
for processing in any run of the algorithm. Hence, all of the
produced ADUs are sent to the sampling mechanism causing
energy and cost overheads. We also note that although it seems
that all of the mobiles provide the same quantity of ADUs,
this is not the case for every instance of the experiment. As
mentioned, these results represent the average values among all
experiments, so the randomized selection seems to converge in
one value. However, in each separate experiment the mobiles
had great variations in providing ADUs. In the contrary, our
QoI functions gave similar results for the same instance of the
experiment since there was no random factor.

Another point to mention is that, as can be seen in all the
above figures, mobile node 14 provides fewer data streams
compared to those provided by all the other mobile phones.
We searched further why this happens. The reason we see this
behavior is that it only starts producing its data streams at the
end of the experiment, so the number of data streams produced
by this device is much fewer.

Figure 9 illustrates the average error for all the regions over
time. At the beginning all the approaches depict low accuracy,



since they have not processed ADUs from enough regions,
due to sampling. However, after the first 100 seconds it is
observed that the random QoI has the lowest accuracy. The
region QoI is close enough to the random one, due to the
decreased accuracy in low weight regions. The region+density
QoI has a small improvement to the results of the region one
and finally the combined QoI has an obvious improvement
over all approaches.

One of our goals was to improve the energy and cost
efficiency of the mobile nodes. By using our infrastructure the
mobile node should only send two numbers to the sampling
node (QoI, cost) or nothing at all, if the node is below
threshold. Figure 10 presents the average percentage of ADUs
that were not sent to the sampling component for each QoI
function. We use the error bars to depict the highest and the
lowest percentage that we received from the mobile nodes.
We have computed that approximately 76.7% of the ADUs
for each mobile were not transmitted and this percentage at
most, depends on the threshold. Thus, there is a great efficiency
improvement on both energy and money for the mobiles. In
the case of the random QoI function the mobile nodes would
transmit all their ADUs in every run, as it is possible to have
them processed and thus the cost efficiency is 0% at all times.

C. Experimental Results for QoI on several sample sizes

In this set of experiments we evaluate the previous QoIs
by executing the experiments on several sampling sizes. Thus,
we evaluate the Error Factor over different sampling sizes that
range from 5% to 70%, which refer to rate allocation that
ranges from 1ADU/sec up to 15ADUs/sec.

Figure 11 illustrates the average Error Percentage, which
was presented earlier over all regions and runs, for each
sampling size. As can be inferred from that figure the random
QoI has obviously the worst outcome in all sampling sizes.
The region QoI follows and the density+region one suggests
a slight improvement to that. However, again there is a great
improvement of the whole system accuracy with the combined
QoI, especially for the smaller sample sizes where the error is
expected to be high.

In figure 12 we present the Error factors in km/h, for
the lower weighted regions. As can be observed, due to our
metrics the random QoI has an improved accuracy compared
to others that give a higher priority to the high weighted
regions. However, this is only up to 40% since there should
be enough data processed in that percentage to overcome the
region weights. Moreover, we observe that the QoI that is
based on region has the worst accuracy since it constantly
tries to satisfy the needs of the other regions. The other two
QoIs result on a better behavior, since they use more metrics
that involve all regions and again the combined QoI function
has the highest accuracy among them.

Figure 13 presents the same data for the higher weighted
regions. As expected the QoI functions that use the region
weight as a metric, result on increased accuracy than the
random case. However, the interesting part is that they have
an almost identical behavior. Thus, it can be inferred that the
information gain from the additional metrics, for the lower
weighted regions, have not reduced the accuracy to the higher
importance ones.

In order to clarify the difference of the metrics, one would
imagine that since both the region+density function and the
combined one have the same average sampling error in both
figures 12 and 13 at sample size 5%, they should also have
the same Error Percentage. However, this factor provides a
representation of the error based on the actual expected price
and not only to the distance of the values. Although a distance
of 2km/h to the sampled result compared to the full dataset one,
can be a small difference if the average speed is approximately
60km/h, it would be a great deal for that factor if the actual
average speed was 5km/h.

D. Experimental Results among different Sampling Strategies

In this set of experiments we evaluate the behavior of
the different sampling mechanisms we proposed. We conduct
several experiments using different rate allocations, to observe
the behavior of the algorithms. We have used the combined
QoI function for all three algorithms and every experiment
suggest a budget of 1.00$ in every run. In the basic algorithm
ISAM we expect that the organization, that defines the fixed
price, would suggest a price that can be handled in all rate
allocation instances. Thus, this fixed price is 0.07$ for each
ADU. In the other two algorithms, the prices are randomly
chosen for each mobile phone and range among 0.01$ to 0.30$
to better observe the behavior when the budget becomes a
bottleneck to the available resources. ISAM can be inferred
as the ideal behavior since it can choose those ADUs with
the highest QoI, because there is no budget bottleneck for the
available resources. However, the other two algorithms seem
to be more realistic.

Figure 14 illustrates the Error of each mechanism in
different rate allocation resources. It is obvious that until rate
reaches 5, the cost is not a bottleneck and all three have
an identical behavior. From that point, ISAM+ depicts the
worst behavior. In order to process as many ADUs as can
be supported by the rate allocation mechanism, ISAM+ has
to reject ADUs when their prices are high, no matter if those
ADUs can provide a higher information gain. Moreover, we
can observe that as rates continue to increase, the problem
becomes worse and the Error begins to rise a little instead of
decreasing in order to process as many low cost ADUs as the
system’s capacity can handle, over high-cost ADUs that may
contain higher QoI value. On the contrary, ISAM++ that uses
ADUs with the highest Information Gain has an impressive
behavior, which is close enough to the ideal ISAM.

In figure 15 we can observe the total payment from the
sampling mechanism to the mobile nodes. ISAM has a linear
behavior due to the fixed price. ISAM+ pays more than
ISAM++, since ISAM++ is not trying to make a full utilization
of the budget. However, both techniques start to converge as
the budget becomes insufficient.

Figure 16 presents the number of ADUs processed at each
rate and the corresponding sample size. Again, ISAM has a
linear behavior since there is no budget concern in that mech-
anism. ISAM+ tries to maximize the processed ADUs based
on the rate allocation, thus it processes more ADUs compared
to ISAM++, which tries to maximize the Informational Gain
instead. However, the total number of processed ADUs depend
on their cost, so both techniques seem to be bounded from
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the budget as sample size increases. Moreover, we illustrate
the sampling size percentage compared to the rates reserved
which has an identical figure to the processed ADUs for the
same rates and budget.

E. Discussion

In this section we evaluated our proposed mechanisms. We
have shown that using QoI functions increases the accuracy of
the results, based on the application targets, and we have ob-
served that combining QoI metrics, improves the informational
profit. On the other hand, the random QoI function resulted
in the worst behavior since it does not consider neither the
application logic nor the importance of the data streams when
sampling.

We have also illustrated that our sampling mechanisms
improve the cost efficiency of the mobile nodes and we
remark that the evaluation between the sampling algorithms,
where users can choose their payments, shows that ISAM++
outperforms ISAM+ since it is more accurate, processes fewer
ADUs and needs to pay less money to the mobile nodes.

V. RELATED WORK

Participatory sensing systems have recently become in-
creasingly popular for processing data sensed on mobile de-
vices to identify events of interest [1]. Several of the current
approaches focus on traffic monitoring systems [2], [15]. For
example, CarTel [15] works with continuous queries where
users set the rate that they want to receive the ADUs from
a specific geographical area, without considering the issue
of data redundancy or the information quality of the ADUs
and the system resource availability. VTrack [2] uses map
matching based on a Hidden Markov Model scheme, with a
way to interpolate sparse data to identify the most probable

road segments driven by the user and to attribute travel times
to those segments. Authors in [16] propose techniques to
provide incentives to the users of the participatory sensing
systems. They consider two types: a platform-centric mech-
anism, that uses a Stackelberg game to maximize the utility
of the platform, and a user-centric auction-based incentive
mechanism. Since their scheme does not consider the quality
of the information, we can employ these mechanisms to attract
more users into the participatory sensing system.

The research in the area involving the problem of sam-
pling is very rich and several approaches have been proposed
(including previous work by the authors). In this section we
review the related work for mobile sensor sampling. In [8],
the authors perform region sampling in sensor networks. They
aim to bound the energy consumption while minimizing the
approximation error and use statistics to predict the optimal
sampling plan, while we aim to maximize the informational
benefit. Al-Kateb et al in [17] propose an algorithm to extend
the reservoir sampling, that selects a uniform random sample
of a given size from an input stream of an unknown size,
with an adaptive-size reservoir. Our technique, driven by the
application logic, outperforms uniform random samples. Arai
et al in [18] propose a technique for sampling in aggregation
queries for a peer-to-peer database as an infrastructure which
is opposed to the stream processing architectural logic. In [19]
they suggest an approach that samples a small fraction of the
sensor data and utilize the correlation model to estimate the
non-sampled readings to decide for the best set of sensors
to sample. This selection is greedily computed by selecting
the sensor that maximizes the estimation confidence of the
correlation model, but results on large computational over-
head and energy consumption, as the sensor data and their
correlations evolve. Stratified Sampling [20] is another well-
known method for efficient sampling from a population, where



the members of the population are combined to constitute
homogeneous subgroups(stratums). Random sampling is then
performed from each stratum independently and the global re-
sult is a weighted combination of all the partial stratum results.
Authors in [21] propose a sampling technique that generates
samples over sliding windows based on the proportion and the
population of the attributes in a window. In [22] they propose a
mobile sensing framework, called OptiMos. OptiMos aims to
identify the optimal sampling for the sensor readings in each
segment, where the selected readings can guarantee reasonably
high sensor coverage with limited sampling rate. Our sampling
technique differs from all these techniques since it considers
real-time constraints as well as the information quality and
cost of the individual data streams.

Finally, techniques that consider the Quality of Information
have also been proposed. Wu et al in [23] suggest an approach
where the quality of data of queries compared to their pro-
cessing cost is considered by the scheduler of the database
to satisfy the user queries. Their definition for quality of data,
however, does not represent the system’s information profit, but
the quality profit for the query. In [24] the proposed technique
uses QoI to identify and select sensors to provide the most
“relevant” sensory data to a users needs, considering a cost
per provider. However, they define QoI as the spatiotemporal
coverage of the sensor, without considering any timeliness
constraints on the data collected. Authors in [25] propose a
model for resource adaptation in stream-mining algorithms that
takes quality into account. However, they do not consider the
quality of the individual data streams but only the quality of
the result for each task.

In our previous work [11] we introduced the architecture
of our Participatory Sensing System, where we investigated
the impact of different QoI functions for providing streams of
events, in the context of traffic monitoring applications. The
goal of this paper is to investigate different sampling strategies,
to maximize the information profit, subject to the real-time and
budget constraints, that focus on: (1) efficiency, (2) constraints
satisfaction, (3) information gain, (4) monetary cost.

VI. CONCLUSIONS

In this paper we present our approach for mobile stream
sampling under time constraints. We propose algorithms that
determine a suitable sample of the data streams based on
the information quality that the individual devices provide
in the system and the corresponding costs. The advantage of
our technique over the classical sampling methods, is that it
considers application real-time constraints and approaches the
application logic with the utility functions. Detailed experi-
mental results illustrate that our approach is practical, efficient
and depicts good performance.
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