
Self-Adaptive Event Recognition for Intelligent Transport Management

Alexander Artikis1, Matthias Weidlich2, Avigdor Gal2, Vana Kalogeraki3 and Dimitrios Gunopulos4
1Institute of Informatics & Telecommunications, NCSR Demokritos, Athens, Greece, a.artikis@iit.demokritos.gr

2Technion - Israel Institute of Technology, Haifa, Israel, {weidlich@tx, avigal@ie}.technion.ac.il
3Department Informatics, Athens University of Economics and Business, Greece, vana@aueb.gr

4Department of Informatics and Telecommunications, University of Athens, Greece, dg@di.uoa.gr

Abstract—Intelligent transport management involves the use
of voluminous amounts of uncertain sensor data to identify
and effectively manage issues of congestion and quality of
service. In particular, urban traffic has been in the eye of
the storm for many years now and gathers increasing interest
as cities become bigger, crowded, and “smart”. In this work
we tackle the issue of uncertainty in transportation systems
stream reporting. The variety of existing data sources opens
new opportunities for testing the validity of sensor reports
and self-adapting the recognition of complex events as a result.
We report on the use of a logic-based event reasoning tool to
identify regions of uncertainty within a stream and demonstrate
our method with a real-world use-case from the city of Dublin.
Our empirical analysis shows the feasibility of the approach
when dealing with voluminous and highly uncertain streams.

Keywords-event processing; pattern matching; event calculus

I. INTRODUCTION

Detecting complex event patterns from multiple, highly
uncertain data streams is a promising vehicle to support
Big Data applications for monitoring, detection, and online
response [4], [9]. Consider, for example, an urban monitoring
system that identifies road congestions and responds by
applying local changes to traffic light control policies to
reduce ripple effects. Such a system may use events that
report on the flow in junctions together with reports from
buses to collect evidence of congestions in-the-make.

Two of the main challenges when dealing with Big Data
are that of variety and veracity. Data, arriving from multiple
heterogeneous sources, may be of poor quality and in general
requires pre-processing and cleaning when used for analytics
and query answering. In particular, sensor networks introduce
uncertainty into the system due to reasons that range from
inaccurate measurements through network local failures to
unexpected interference of mediators. While the first two
reasons are well recorded in the literature, the latter is
a new phenomenon that stems from the combination of
variety and sensor data. Sensor data may go through multiple
mediators en route to our systems. Such mediators apply
various filtering and aggregation mechanisms, most of which
are unknown to the system that receives the data. Hence, the
uncertainty that is inherent to sensor data is multiplied by
the factor of unknown aggregation and filtering treatments.

In this work we outline the principle of using variety
to effectively handle veracity. In a nutshell, streams from

multiple sources are used to generate common complex
events. These events are matched against each other to
identify mismatches that indicate uncertainty regarding the
event streams. Temporal regions of uncertainty are identified
from which point the monitoring system autonomously
decides on how to manage this uncertainty. At times,
complete event intervals are neglected. At other times, a
selection mechanisms prefers one stream over the others.
Finally, using multiple sources, one can create a distribution
over the possible occurrence of events in inconsistent regions.

Our tool of choice for this task is the RTEC (Run-Time
Event Calculus) event recognition engine [2]. In addition
to standard event algebra operators, RTEC has a built-
in representation of the law of inertia [7] that makes it
particularly useful for expressing rules that dynamically
discard noisy event sources and include reliable ones.

We illustrate our approach using real, heterogeneous data
streams concerning city transport and traffic management.
First, we use data from Sydney Coordinated Adaptive Traffic
System (SCATS) sensors, that is, fixed sensors mounted on
intersections to measure traffic flow. Second, we use bus
probe data stating, among others, the location, line and delay
of each bus as well as traffic congestions. The voluminous
data streams come from the city of Dublin, Ireland, and
concern all SCATS sensors of the city and the complete
bus fleet. To the best of our knowledge, this is the first
approach combining these heterogeneous streams for real-
time intelligent transport management.

The contributions of the paper are summarized as follows:
• At a conceptual level, we show how cross-validating

multiple data streams can be used for self-adaptive event
processing that enhances stream credibility.

• We show how the use of semantics can support reasoning
for such cross-validation.

• We provide empirical evidence to the feasibility of the
proposed approach.

Organisation. Section II provides an introduction to
complex event processing and discusses related research on
uncertain data stream handling. Section III presents the event
recognition engine that we use. Section IV demonstrates
how to model event patterns for city transport and traffic
management. These patterns are used in Section V to
demonstrate self-adaptation for noisy data stream handling.

Section VI presents our empirical evaluation, showing the
method feasibility, while Section VII summarises our work.

II. BACKGROUND AND RELATED WORK

Event processing refers to an approach to software systems
that is based on event delivery, and that includes specific logic
to filter, transform, or detect patterns in events as they occur.
Event processing platforms are diversified into products with
various approaches towards event processing, including the
stream oriented approach, the rule oriented approach, the
imperative approach, and the publish-subscribe approach. As
a common denominator, all of these approaches assume that
all relevant events are consumed by the event processing
system, all events reported to the system have occurred, and
event processing can be done in a deterministic fashion.

Etzion and Niblett [4] discuss the roots of uncertainty in an
event-based system and present several approaches to handle
it. Gal et al. [5] model uncertainty in data steams and survey
techniques to manage it, focusing on uncertainty of rules.
Generally speaking, there may be four different approaches to
deal with event uncertainty. First, uncertainty can simply be
ignored. Such a solution may be cost-effective if uncertainty
is relatively infrequent, and the damage of not handling it is
not substantial. A second approach requires complex events
to be recognized only when the event pattern is a necessary
and sufficient condition to deterministic detection. Most event
processing systems follow these two approaches, that is, they
do not manage uncertainty [3].

According to a third approach, it is possible to notify
the result of detected events, along with an indication (such
as probability) to its validity. Methods for this approach
are based on probabilistic graphical models [13], Markov
Logic Networks [12], probabilistic logic programming [11],
and fuzzy set and possibility theory [8]. Although there
is considerable work on optimising probabilistic reasoning
techniques, the imposed overhead does not allow for real-time
performance in a wide range of applications [1].

Finally, event recognition can be designed so that it makes
use of reinforcement from multiple indications. Our work
falls into this category, in which multiple sources are used
for cross-validation. Due to volume and velocity, cleaning
the data in advance (see, for example, [6]) is not always
feasible, while common uncertainty elimination techniques,
such as load shedding based on confidence, are in most cases
ineffective [1].

These last two approaches are orthogonal and systems may
use one or both approaches. While our proposed method
falls under the fourth approach, its outcome can be used to
support other approaches as well. For example, by identifying
temporal regions of inconsistency, one can establish an
empirical probability distribution over the event streams.
Also, discarding inconsistent streams effectively creates a
deterministic dataset, as is promoted by the second approach.

III. A LOGIC-BASED EVENT MODEL

We present a logic-based event processing model based on
the Event Calculus for Run-Time reasoning (RTEC) [2]. The
Event Calculus, introduced in [7], is a logic programming
formalism for reasoning about events and their effects. Based
on [2], we summarise the essentials of the model. We adopt
the common logic programming convention that variables
start with upper-case letters (and are universally quantified,
unless otherwise indicated), while predicates and constants
start with lower-case letters. Our approach relies on logic
programming due to the formal, declarative semantics and
the rich expressiveness it offers. RTEC supports efficient
reasoning (as is evident in the empirical evaluation), and thus
serves us well in illustrating the approach feasibility.

A. Event Representation

Systems for event recognition (event pattern matching [9])
accept as input a stream of time-stamped simple, derived
events (SDE). An SDE (or low-level event) is the result of
applying a computational derivation process to some other
event, such as an event coming from a sensor [10]. Events
that arrive at the system are not the raw events emitted by
sensors. Such raw events are enriched, filtered, and aggregated
by multiple mediators, whose internal functionalities may
not be known to the event recognition system. As indicated
above, such preprocessing may result in uncertainty as to the
validity of the events, and the use of multiple event streams
for cross-validation is at the heart of our proposed solution.

Using SDE as input, event recognition systems identify
composite events (CE) of interest — collections of events that
satisfy some pattern. The specification of a CE (or high-level
event) imposes temporal and, possibly, atemporal constraints
on its deriving events, either SDEs or other CEs.

In the RTEC model, types of events are represented as
n-ary predicates event(Attribute1,. . . ,AttributeN), such that
the parameters define the attribute values of an event instance
event(value1,. . . ,valueN). An example from the Dublin traffic
management scenario is the type of SDE emitted by SCATS
sensors, traffic(StreetSegId, Flow, Count), which refers to
the measured traffic flow and aggregate number of vehicles
passing some sensor (identified by the attribute StreetSegId).
Thus, a specific event instance is an instantiation of this
predicate with constant values, e.g., traffic(s187, 4.51, 117).

Time is assumed to be linear and discrete, represented by
integer time-points. The occurrence of an event E at time
T is modelled by the two-ary predicate happensAt(E, T). To
reason about the effects of events, we rely on the notion of a
fluent F , a property that is allowed to have different values
at different points in time. Here, the term F =V denotes
that fluent F has value V . Informally, holdsAt(F =V, T)
represents that fluent F has value V at a particular time-point
T . Interval-based semantics are obtained with the predicate
holdsFor(F =V, I), where I is a list of maximal intervals
for which fluent F has value V continuously. holdsAt and

Table I
RTEC PREDICATES.

Predicate Meaning

happensAt(E, T) Event E occurs at time T

holdsAt(F =V, T) The value of fluent F is V at time T

holdsFor(F =V, I) I is the list of the maximal intervals
for which F =V holds continuously

initiatedAt(F =V, T) At time T a period of time
for which F =V is initiated

terminatedAt(F =V, T) At time T a period of time
for which F =V is terminated

union all(L, I) I is the list of maximal intervals
produced by the union of the lists
of maximal intervals of list L

intersect all(L, I) I is the list of maximal intervals
produced by the intersection of the
lists of maximal intervals of list L

relative complement all(I ′,L, I) I is the list of maximal intervals
produced by the relative complement
of the list of maximal intervals I′ wrt
every list of maximal intervals of list L

holdsFor are defined in such a way that, for any fluent F ,
holdsAt(F =V, T) if and only if time-point T belongs to one
of the maximal intervals of I for which holdsFor(F =V, I).
Table I presents the main RTEC predicates.

Fluents are of two kinds: simple and statically determined.
For a simple fluent F , F =V holds at a particular time-
point T if F =V has been initiated by an event at some
time-point earlier than T (using predicate initiatedAt), and
has not been terminated in the meantime (using predicate
terminatedAt). This is an implementation of the law of inertia.
Statically determined fluents are defined by means of interval
manipulation constructs, such as union all, intersect all and
relative complement all (see Table I).

In our model, the input SDE streams are represented by
logical facts that define event instances (predicate happensAt)
or the values of fluents (predicates holdsAt and holdsFor).
Taking up the example of the SCATS sensor given earlier,
facts of the following structure model the input stream:

happensAt(traffic(StreetSegId ,Flow ,Count), T)

CEs, in turn, are modelled as logical rules defined over
event instances (happensAt), the effects of events (initiatedAt
and terminatedAt), or the values of the fluents (holdsAt and
holdsFor), and implement the respective temporal and atempo-
ral constraints. For illustration, consider a CE that captures
whether traffic flow as given by traffic SDE is decreasing. We
may capture the CE as a simple fluent flowTrend that assumes
the value decreasing if in two consecutive SDEs (the second
one occurring six minutes, that is, 360×106 milliseconds,
after the first one) there is a drop of more than 10% in the
flow value:

initiatedAt(flowTrend(S)= decreasing , T)←
happensAt(traffic(S ,Flow ,), T),
happensAt(traffic(S ,Flow ′,), T+360×10 6),
Flow ′ < V−Flow×0 .1

(1)

‘ ’ denotes a ‘free’ variable that is not bound in a rule.

B. Run-Time Composite Event Recognition

Based on the introduced model, run-time CE recognition is
performed as follows. The RTEC engine queries, computes
and stores the maximal intervals of fluents and the time-
points in which events occur. CE recognition takes place
at specified query times Q1, Q2, At each query time
Qi only the SDEs that fall within a specified interval —
the ‘working memory’ (WM) or ‘window’ — are taken into
consideration: all SDEs that took place before or on Qi−WM
are discarded. This constraint ensures that the cost of CE
recognition depends only on the size of WM and not on
the complete SDE history. The size of WM, as well as the
temporal distance between two consecutive query times —
the ‘step’ (Qi−Qi−1) — are tuning parameters that can be
either chosen by the user or optimized for performance.

The relationships between WM and Qi−Qi−1 can be
divided into three cases, as follows.
• WM < Qi−Qi−1, that is, WM is smaller than the step.

In this case, the effects of the SDE that took place in
(Qi−1, Qi−WM] will be lost.
• WM = Qi−Qi−1. In this case, no information will be

lost, provided that all SDEs arrive at the engine in a
timely manner. If SDEs do not arrive in a timely manner,
then the effects of SDEs that took place before Qi but
arrived after Qi will be lost.

• WM > Qi−Qi−1. In the common case that SDEs arrive
at the engine with delays, it is preferable to make WM
longer than the step. This way, it becomes possible to
compute, at Qi, the effects of SDE that took place in
(Qi−WM, Qi−1], but arrived after Qi−1.

Further details on RTEC may be found in [2].

IV. EVENT RECOGNITION FOR TRANSPORT & TRAFFIC
MANAGEMENT

The model presented above is used for city transport and
traffic management in the city of Dublin. We first describe the
input event streams of the different sources (Section IV-A).
Then, we turn to the definition of CE in Section IV-B.

A. Input Event Streams

To guide transport and traffic management, the input to the
event recognition engine consists of SDE that come from two
heterogeneous data streams with different time granularity.
First, static sensors mounted on various junctions (SCATS
sensors) transmit every six minutes information about traffic
flow and the aggregate number of vehicles passing over. In
addition, buses transmit information about their position and
congestions every 20-30 sec. Buses transmit SDEs with the
following structures:

happensAt(move(Bus,Line,Operator ,Delay), T)
holdsAt(gps(Bus,Lon,Lat ,Direction,Congestion)= true,T)

move(Bus,Line,Operator ,Delay) records an event where
Bus runs in Line with a Delay at time T (in micro-
seconds), and is owned by Operator . Delay is a pos-
sibly negative integer measured in seconds. In addition,
gps(Bus,Lon,Lat ,Direction,Congestion) states the longi-
tude and latitude location of the Bus , as well as its direction
(0 or 1) on the Line. Further, the gps fluent provides
information about congestion (0 or 1) in the given location.

B. Composite Events

Several CEs can be derived from the input streams and
reported to the city transport decision-makers. These CEs
relate to, among others, bus driving quality, traffic flow
(trends), as well as traffic congestion. The choice of CE,
and their definitions, were specified in collaboration with the
domain experts. In this section, we focus on traffic congestion.
Information on congestion is reported in both input streams,
SCATS sensors and buses. Consider first congestion as
reported by SCATS sensors:

holdsFor(scatsReportedCongestion(LonS ,LatS)= true, I)←
holdsFor(flow(LonS ,LatS)= low , I1),
holdsFor(aggregateCount(LonS ,LatS)= low , I2),
intersect all([I1, I2], I)

(2)

flow(LonS ,LatS) and aggregateCount(LonS ,LatS) are
simple fluents classifying the traffic flow and aggregate
number of vehicles passing over the SCATS sensor at location
(LonS ,LatS) as low/average/high. Whether the traffic flow
and aggregate count is low (respectively average/high) at
some SCATS sensor depends on the capacity of the road
in which the sensor is installed. intersect all computes the
intersection of a list of lists of maximal intervals — see
Table I for the interval manipulation constructs of RTEC.
According to rule (2), a congestion is said to be reported at
the location (LonS ,LatS) of a SCATS sensor if the traffic
flow and the aggregate number of vehicles passing through
that location are low.

The congestion definition presented above is sufficient for
the given SDE, as these are defined in the SCATS dataset.
Alternative congestion definitions from fixed sensors are
beyond the scope of this paper.

Congestion is also reported by buses — this is very useful
as there are numerous areas in the city that do not have
SCATS sensors. Consider the following formalisation:

initiatedAt(busReportedCongestion(Lon,Lat)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
close(LonB ,LatB ,Lon,Lat)

terminatedAt(busReportedCongestion(Lon,Lat)= true,T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
close(LonB ,LatB ,Lon,Lat)

(3)

(Lon,Lat) are the coordinates of some area of interest, while
(LonB ,LatB) are the current coordinates of a Bus . The
gps fluent, like the move event, is given by the dataset.
close is an atemporal predicate computing the distance
between two points and comparing them against a threshold.
busReportedCongestion(Lon,Lat) starts being true when a
bus moves close to the location (Lon,Lat) for which we
are interested in detecting congestions, and (the bus) reports
a congestion (represented by 1 in the gps fluent). Moreover,
busReportedCongestion(Lon,Lat) stops being true when
a (possibly different) bus moves close to (Lon,Lat) and
reports no congestion (represented by 0 in gps).

V. SELF-ADAPTATION

Event processing applications deal with various types
of uncertainty such as incomplete and erroneous SDE
streams [1]. Not surprisingly, the bus and SCATS datasets on
which we perform CE recognition are no exception. Various
SDE fields are incomplete or incorrect and sensors provide
conflicting information. Due to the significant overhead of
probabilistic reasoning, uncertainty is often ignored (see
Section II), compromising by that CE recognition accuracy.
In this section we present an approach for self-adaptive CE
recognition that deals with some types of noise without using
probabilistic reasoning techniques. Consequently, we may
improve accuracy while maintaining real-time performance.

Our methodology is simple. It involves representing noise
as CE, using the same mechanism that aims at detecting CE
patterns to tell us whether our detection contains embedded
uncertainty. By doing so, we can gain from the efficient
mechanisms that were developed for event processing to
recognize and manage uncertainty. Next, we provide several
instances to this methodology.

We look into types of noise that are known in advance,
either via machine learning or expert knowledge. For example,
it is known that SCATS sensors that are close to each
other often report conflicting traffic flow values, which we
interpret as uncertainty due to the sensor proximity. We model
such a noise type as a CE, and upon detection we adapt
the CE recognition process by (temporarily) discarding the
corresponding sensor(s). The following example expresses
SCATS sensor flow noise:

holdsFor(sensorFlowNoise(S1 ,S2)= true, I)←
holdsFor(flowTrend(S1)= increasing , I1),
holdsFor(flowTrend(S2)= decreasing , I2),
intersect all([I1, I2], I3),
holdsFor(flowTrend(S1)= decreasing , I4),
holdsFor(flowTrend(S2)= increasing , I5),
intersect all([I4, I5], I6), union all([I3, I6], I)

(4)

A partial definition of the flowTrend fluent was given
in rule (1), while union all computes the union of a
list of lists of maximal intervals (see Table I). The
sensorFlowNoise(S1 ,S2) CE is recognised when two

SCATS sensors S1 and S2 have conflicting traffic flow
values, that is, the flow value in S1 is increasing (re-
spectively decreasing) while in S2 is decreasing (in-
creasing). We compute the maximal intervals for which
sensorFlowNoise(S1 ,S2)= true holds continuously only for
sensors S1 and S2 that are close to each other.

In Dublin three sensors are often placed close to each
other, all reporting on a specific junction. In case one of
these sensors contradicts the others, the former may be
temporarily discarded from the CE recognition process. An
implementation of this idea leads to a variant of rule (2) that
detects traffic congestion by means of SCATS sensors:

holdsFor(scatsReportedCongestion(LonS ,LatS)= true, I)←
holdsFor(flow(LonS ,LatS)= low , I1),
holdsFor(aggregateCount(LonS ,LatS)= low , I2),
intersect all([I1, I2], I3),
holdsFor(noisySCATS (S ,LonS ,LatS)= true, I4),
relative complement all(I3, [I4], I)

(2′)

The maximal intervals for which
noisySCATS (S ,LonS ,LatS)= true are computed
by the union of the lists of maximal intervals
for which sensorFlowNoise(S ,S1)= true and
sensorFlowNoise(S ,S2)= true, where S1 and S2

are the SCATS sensors that are close to S. In
relative complement all(I ′, L, I), I is the list of maximal
intervals produced by the relative complement of the list of
maximal intervals I ′ with respect to every list of maximal
intervals of list L. According to rule (2′), a SCATS sensor
S is not taken into consideration in the detection of a
congestion as long as S has a conflicting flow trend with its
near-by SCATS sensors.

We also identify the conditions in which a bus provides
potentially noisy information in order to adapt the CE recog-
nition process by (temporarily) discarding the information
provided by the noisy bus. This idea is implemented as
follows (‘not’ denotes negation-by-failure):

initiatedAt(noisy(Bus)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
close(LonB ,LatB ,LonS ,LatS),
not holdsAt(scatsReportedCongestion(LonS ,LatS)= true,T)

terminatedAt(noisy(Bus)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
close(LonB ,LatB ,LonS ,LatS),
holdsAt(scatsReportedCongestion(LonS ,LatS)= true,T)

terminatedAt(noisy(Bus)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
close(LonB ,LatB ,LonS ,LatS),
not holdsAt(scatsReportedCongestion(LonS ,LatS)= true,T)

(5)

A bus is said to provide noisy information about congestions
if a SCATS sensor contradicts it, assuming here that SCATS
sensors are more trustworthy than buses. More precisely,
noisy(Bus)= true is initiated when the Bus reports a con-
gestion at its current location (LonB ,LatB), the current
location of the bus is close to the location (LonS ,LatS)
of SCATS sensor S, and S does not report a congestion.
noisy(Bus)= true is terminated when the Bus moves close
to a SCATS sensor S and agrees with S on congestion.

This definition of noisy(Bus) is designed to reduce false
positives, that is, when a bus reports a congestion in an area
in which the SCATS sensors do not detect a congestion. In
other applications, we may additionally/alternatively aim at
reducing false negatives.

Using noisy(Bus) we adapt the busReportedCongestion
definition that reports congestion from bus data:

initiatedAt(busReportedCongestion(Lon,Lat)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 1), T),
not holdsAt(noisy(Bus)= true),
close(LonB ,LatB ,Lon,Lat)

terminatedAt(busReportedCongestion(Lon,Lat)= true, T)←
happensAt(move(Bus, , ,), T),
holdsAt(gps(Bus,LonB ,LatB , , 0), T),
not holdsAt(noisy(Bus)= true),
close(LonB ,LatB ,Lon,Lat)

(3′)

According to this new formalisation, the congestion infor-
mation offered by a bus is discarded as long as the bus is
contradicted by SCATS sensors.

The performance overhead of self-adaptive event recog-
nition for dealing with noisy data streams involves mainly
the recognition of additional CEs expressing various types
of noise. The number of such CEs is proportional to the
number of event sources. In most applications, this means
that there will only be a small increase in the number of
CEs being recognised. In the following section we evaluate
the execution overhead on the city of Dublin.

VI. EMPIRICAL EVALUATION

Experimental Setup. Our experiments were performed
on real data streams coming from the buses and SCATS
sensors of Dublin, Ireland. The streams were collected from
February 1 to April 30 in 2012 and comprise 13GB of
data. The bus dataset includes 942 buses and 91 lines/routes.
Each operating bus emits SDEs every 20-30 seconds with
information about its position, delay and congestions. On
average, the bus dataset has a new SDE every 2 seconds. The
SCATS dataset includes 966 sensors. Each SCATS sensor
transmits information every six minutes and reports on traffic
flow and aggregate number of vehicles passing over the
sensor. Excerpts from both datasets are publicly available1.

1http://www.dublinked.ie

0

1

2

3

4

5

6

7

8

9

10

10 min =
12,5K SDE

30 min =
40,5K SDE

50 min =
67K SDE

70 min =
94,5K SDE

90 min =
124K SDE

110 min =
152K SDE

Ti
m

e
 (

se
c)

Working Memory

Static Event Recognition Self-Adaptive Event Recognition

Figure 1. Static and self-adaptive CE recognition in a single processor.

We recognise CEs concerning individual bus punctuality,
line punctuality (the maximal intervals for which a line
consisting of a number of buses is said to be punctual), bus
driving quality, traffic flow (trends), and congestions (in any
location of interest in Dublin). Additionally, to allow for
self-adaptation, we compute the maximal intervals for which
a SCATS sensor is contradicted by near-by SCATS sensors,
and the maximal intervals for which a bus is contradicted
by a SCATS sensor on congestion.

The experiments were run on a computer with eight Intel i7
950@3.07GHz processors and 12GB RAM, running Ubuntu
Linux 12.04 and YAP Prolog 6.2.2.

Results. We first compare two sets of experiments. In
the first, we performed ‘static’ recognition, that is, CE
recognition that always takes into consideration all event
sources. In this case, at each query time RTEC computes and
stores the maximal intervals of around 51,000 CEs. Then,
we performed self-adaptive event recognition where noisy
sensors are detected at run-time and the system autonomously
discards them until they resume offering reliable information.
In this case, RTEC computes and stores the maximal intervals
of 53,500 CEs with a 5% increase in the number of CEs
compared to the static setting. Figure 1 displays the average
CE recognition times in CPU seconds. The working memory
(WM) ranges from 10 min, including on average 12,500 SDEs,
to 110 minutes, including 152,000 SDEs. CE recognition
was performed on a single processor.

Figure 1 shows that self-adaptive CE recognition has
a minimal overhead compared to static recognition. The
overhead is due to computing and storing the maximal
intervals of additional CEs, capturing the intervals for which
some sensors are considered unreliable.

Figure 1 also shows that RTEC performs real-time CE
recognition both in the static and the self-adaptive setting.
For example, in a 10 min WM both static and self-adaptive
recognition take on average around 1 sec, while in a 110
min WM recognition takes on average around 9 sec.

31 sec =

0

1

2

3

4

5

6

7

8

9

10

10 min =
12,5K SDE

30 min =
40,5K SDE

50 min =
67K SDE

70 min =
94,5K SDE

90 min =
124K SDE

110 min =
152K SDE

Ti
m

e
(s

ec
)

Working Memory

Static Event Recognition Self-Adaptive Event Recognition

Figure 2. Static and self-adaptive CE recognition in 4 processors.

CE recognition performance is not entirely dependent on
the size of the input data streams. The complexity of the
CE definitions affects significantly recognition times. In this
work we make use of quite complex CE definitions including
various constraints on multiple entities (buses running on
the same line, for example) and heterogeneous data streams.
This is in contrast to the vast majority of the event processing
literature where quite simple CE definitions are used.

CE recognition for transport and traffic management, as
defined here, is straightforward to distribute. In Dublin, for
instance, SCATS sensors are placed into the intersections of
four geographical areas: central city, north city, west city, and
south city. We distributed CE recognition accordingly. We
used four processors of the computer on which we performed
the experiments — each processor computed CEs concerning
the SCATS sensors of one of the four areas of Dublin as
well as CE concerning the buses that go through that area.

Figure 2 shows the average CE recognition times for
the static and the self-adaptive settings. We see that the
performance difference between static and self-adaptive CE
recognition is smaller than before. This is due to the fact
that, in each processor, the difference in the number of CEs
between the static and the self-adaptive setting is smaller as
each processor computes CEs concerning a smaller number
of event sources. For example, the processor responsible for
the largest geographical area of Dublin computes and stores
the maximal intervals of 18,000 CEs in the static setting and
19000 CEs in the self-adaptive setting. In other words, in
distributed, self-adaptive CE recognition the intervals of at
most 1,000 additional CEs are computed while in centralised,
self-adaptive recognition we compute the intervals of 2,500
additional CEs.

Distributing CE recognition to four processors lead to
significant performance gain. The input to each processor is
restricted to the SDEs of the SCATS sensors and buses for
which it performs CE recognition. Furthermore, as mentioned
above, each processor has to compute and store the maximal

0

2

4

6

8

10

12

14

180K SDE 194K SDE 208K SDE 222K SDE 236K SDE 250K SDE

Ti
m

e
 (

se
c)

Working Memory

Static Event Recognition Self-Adaptive Event Recognition

Figure 3. Static and self-adaptive CE recognition in 4 processors: high
velocity data streams.

intervals of a smaller number of CEs. One may further
distribute CE recognition by dividing further the geographical
area of the city under consideration, thus reducing CE
recognition times.

To test our approach on higher velocity data streams, we
increased further the WM size. Figure 3 shows the average
CE recognition times when WM ranges from 180,000 SDEs
to 250,000 SDE. In these experiments four processors were
used in parallel. As shown in Figure 3, the performance of
self-adaptive CE recognition is very close to that of static
recognition even in larger data streams. Therefore, we can
conclude that data velocity has only minor impact on the
performance overhead of self-adaptation.

VII. SUMMARY AND FUTURE WORK

Two of the main challenges when dealing with Big Data
are those of variety and veracity. We presented the principle
of using variety to effectively handle veracity. Streams from
multiple sources are used to generate common composite
events. These events are matched against each other to
identify mismatches that indicate uncertainty regarding the
event streams. Temporal regions of uncertainty are identified
from which the system autonomously decides to adapt its
event sources in order to deal with uncertainty, without
compromising efficiency. At times, complete event intervals
are neglected. At other times, a selection mechanisms prefers
one stream, or an entity within a stream, over the others.

Our approach is generic and applicable to any event
processing application in which noise types can be determined
via expert knowledge or machine learning techniques. For
illustration purposes, we used real, heterogeneous data
streams from SCATS sensors and buses in Dublin. To the
best of our knowledge, this is the first approach combining
these heterogeneous streams for real-time intelligent transport
management. Our experiments show that self-adaptive event
recognition compromises efficiency only very slightly, and

therefore, is a promising approach to dealing with veracity
in Big Data applications.

For future work, we intend to explore the increase in
accuracy achieved by self-adaptive event recognition. In the
INSIGHT project2, we are collecting datasets for which
ground truth is available (for instance, by means of tweets
sent to the radio station reporting on congestions and quality
of transport). In this way, we will be able to perform a
balanced comparison with probabilistic reasoning approaches.

ACKNOWLEDGMENT

This work was supported by the EU INSIGHT project
(FP7-ICT 318225) and the ERC IDEAS NGHCS project.

REFERENCES

[1] A. Artikis, O. Etzion, Z. Feldman, and F. Fournier. Event
processing under uncertainty. In DEBS, pages 32–43. ACM,
2012.

[2] A. Artikis, M. Sergot, and G. Paliouras. Run-time composite
event recognition. In DEBS, pages 69–80. ACM, 2012.

[3] G. Cugola and A. Margara. Processing flows of information:
From data stream to complex event processing. ACM
Computing Surveys, 44(3):15, 2012.

[4] Opher Etzion and Peter Niblett. Event Processing in Action.
Manning Publications Company, 2010.

[5] A. Gal, S. Wasserkrug, and O. Etzion. Event processing
over uncertain data. In Reasoning in Event-Based Distributed
Systems, pages 279–304. Springer, 2011.

[6] Shawn R. Jeffery, Minos N. Garofalakis, and Michael J.
Franklin. Adaptive cleaning for rfid data streams. In VLDB,
pages 163–174, 2006.

[7] R. Kowalski and M. Sergot. A logic-based calculus of events.
New Generation Computing, 4(1):67–96, 1986.

[8] H. Liu and H.-A. Jacobsen. Modeling uncertainties in
publish/subscribe systems. In ICDE, pages 510–522, 2004.

[9] D. Luckham. The Power of Events: An Introduction to Complex
Event Processing in Distributed Enterprise Systems. Addison-
Wesley, 2002.

[10] D. Luckham and R. Schulte. Event processing glossary —
version 1.1. Event Processing Technical Society, July 2008.
http://www.ep-ts.com/.

[11] A. Skarlatidis, A. Artikis, J. Filippou, and G. Paliouras. A
probabilistic logic programming event calculus. Theory and
Practice of Logic Programming, 2013.

[12] A. Skarlatidis, G. Paliouras, G. Vouros, and A. Artikis.
Probabilistic event calculus based on markov logic networks.
In RuleML America, pages 155–170, 2011.

[13] S. Wasserkrug, A. Gal, O. Etzion, and Y. Turchin. Efficient
processing of uncertain events in rule-based systems. IEEE
Trans. Knowl. Data Eng., 2011.

2http://www.insight-ict.eu

